球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: 1. * n 次元ラプラス方程式の解となる斉次多項式を単位球面に制限する事で得られる関数。 2. * 次元 n が 3 の場合の 1 の意味での球面調和関数で、球面座標 (r, θ, φ) で書いたラプラス方程式の変数分離解を記述するのに用いる事ができる関数 Y nk (θ, φ). 本項では 1 及び 2 双方の意味の球面調和関数について述べるが、特に断りがない限り、「球面調和関数」という言葉を 1 の意味で用いる。

Property Value
dbo:abstract
  • 球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: 1. * n 次元ラプラス方程式の解となる斉次多項式を単位球面に制限する事で得られる関数。 2. * 次元 n が 3 の場合の 1 の意味での球面調和関数で、球面座標 (r, θ, φ) で書いたラプラス方程式の変数分離解を記述するのに用いる事ができる関数 Y nk (θ, φ). 本項では 1 及び 2 双方の意味の球面調和関数について述べるが、特に断りがない限り、「球面調和関数」という言葉を 1 の意味で用いる。 (ja)
  • 球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: 1. * n 次元ラプラス方程式の解となる斉次多項式を単位球面に制限する事で得られる関数。 2. * 次元 n が 3 の場合の 1 の意味での球面調和関数で、球面座標 (r, θ, φ) で書いたラプラス方程式の変数分離解を記述するのに用いる事ができる関数 Y nk (θ, φ). 本項では 1 及び 2 双方の意味の球面調和関数について述べるが、特に断りがない限り、「球面調和関数」という言葉を 1 の意味で用いる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 483964 (xsd:integer)
dbo:wikiPageLength
  • 25059 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90143323 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: 1. * n 次元ラプラス方程式の解となる斉次多項式を単位球面に制限する事で得られる関数。 2. * 次元 n が 3 の場合の 1 の意味での球面調和関数で、球面座標 (r, θ, φ) で書いたラプラス方程式の変数分離解を記述するのに用いる事ができる関数 Y nk (θ, φ). 本項では 1 及び 2 双方の意味の球面調和関数について述べるが、特に断りがない限り、「球面調和関数」という言葉を 1 の意味で用いる。 (ja)
  • 球面調和関数(きゅうめんちょうわかんすう、英: spherical harmonics)あるいは球関数(きゅうかんすう、英: spherical functions)は以下のいずれかを意味する関数である: 1. * n 次元ラプラス方程式の解となる斉次多項式を単位球面に制限する事で得られる関数。 2. * 次元 n が 3 の場合の 1 の意味での球面調和関数で、球面座標 (r, θ, φ) で書いたラプラス方程式の変数分離解を記述するのに用いる事ができる関数 Y nk (θ, φ). 本項では 1 及び 2 双方の意味の球面調和関数について述べるが、特に断りがない限り、「球面調和関数」という言葉を 1 の意味で用いる。 (ja)
rdfs:label
  • 球面調和関数 (ja)
  • 球面調和関数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of