Property |
Value |
dbo:abstract
|
- 数学の複素解析の分野において、孤立特異点(こりつとくいてん、英: isolated singularity)とは、その近くに他の特異点が存在しない特異点のことを言う。言い換えると、ある複素数 z0 が函数 f の孤立特異点であるとは、z0 を中心とする開円板 D で、D {z0} 上では f が正則となるようなものが存在することを言う。 孤立特異点はその扱いやすさに応じて、可除特異点・極・真性特異点の三種類に分類される。 ローラン級数や留数定理のような、複素解析における多くの重要な結果においては、函数のすべての特異点が孤立していることが要求されている。 函数解析学の一般的な見地から正式に言うと、ある函数 の孤立特異点とは、その函数の定義されるある開集合において「位相的に孤立している」点のことである。 (ja)
- 数学の複素解析の分野において、孤立特異点(こりつとくいてん、英: isolated singularity)とは、その近くに他の特異点が存在しない特異点のことを言う。言い換えると、ある複素数 z0 が函数 f の孤立特異点であるとは、z0 を中心とする開円板 D で、D {z0} 上では f が正則となるようなものが存在することを言う。 孤立特異点はその扱いやすさに応じて、可除特異点・極・真性特異点の三種類に分類される。 ローラン級数や留数定理のような、複素解析における多くの重要な結果においては、函数のすべての特異点が孤立していることが要求されている。 函数解析学の一般的な見地から正式に言うと、ある函数 の孤立特異点とは、その函数の定義されるある開集合において「位相的に孤立している」点のことである。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2021 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:title
|
- Singularity (ja)
- Singularity (ja)
|
prop-en:urlname
|
- Singularity (ja)
- Singularity (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の複素解析の分野において、孤立特異点(こりつとくいてん、英: isolated singularity)とは、その近くに他の特異点が存在しない特異点のことを言う。言い換えると、ある複素数 z0 が函数 f の孤立特異点であるとは、z0 を中心とする開円板 D で、D {z0} 上では f が正則となるようなものが存在することを言う。 孤立特異点はその扱いやすさに応じて、可除特異点・極・真性特異点の三種類に分類される。 ローラン級数や留数定理のような、複素解析における多くの重要な結果においては、函数のすべての特異点が孤立していることが要求されている。 函数解析学の一般的な見地から正式に言うと、ある函数 の孤立特異点とは、その函数の定義されるある開集合において「位相的に孤立している」点のことである。 (ja)
- 数学の複素解析の分野において、孤立特異点(こりつとくいてん、英: isolated singularity)とは、その近くに他の特異点が存在しない特異点のことを言う。言い換えると、ある複素数 z0 が函数 f の孤立特異点であるとは、z0 を中心とする開円板 D で、D {z0} 上では f が正則となるようなものが存在することを言う。 孤立特異点はその扱いやすさに応じて、可除特異点・極・真性特異点の三種類に分類される。 ローラン級数や留数定理のような、複素解析における多くの重要な結果においては、函数のすべての特異点が孤立していることが要求されている。 函数解析学の一般的な見地から正式に言うと、ある函数 の孤立特異点とは、その函数の定義されるある開集合において「位相的に孤立している」点のことである。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |