Property |
Value |
dbo:abstract
|
- 数学において、q 個の元をもつ有限体 Fq 上で定義された非特異射影代数多様体 V の合同ゼータ関数 (congruent zeta function) Z(V, s)(または局所ゼータ関数 (local zeta function))とは、Nm を Fq の m 次拡大体 Fqm 上の V の(有理)点の数(定義方程式の解の個数)としたとき、 で定義される。変数変換 u = q-1 を行うと、これは u の形式的冪級数として で定義される。 あるいは同じことだが、 が定義に採用されることもある。言い換えると、合同ゼータ関数 Z(V, u) とは、有限体 F 上で V を定義する方程式の F の k 次拡大体 Fk における解の数の生成母関数が、Z(V, u) の対数微分となるような関数とも定義できる。 (ja)
- 数学において、q 個の元をもつ有限体 Fq 上で定義された非特異射影代数多様体 V の合同ゼータ関数 (congruent zeta function) Z(V, s)(または局所ゼータ関数 (local zeta function))とは、Nm を Fq の m 次拡大体 Fqm 上の V の(有理)点の数(定義方程式の解の個数)としたとき、 で定義される。変数変換 u = q-1 を行うと、これは u の形式的冪級数として で定義される。 あるいは同じことだが、 が定義に採用されることもある。言い換えると、合同ゼータ関数 Z(V, u) とは、有限体 F 上で V を定義する方程式の F の k 次拡大体 Fk における解の数の生成母関数が、Z(V, u) の対数微分となるような関数とも定義できる。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 13994 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学において、q 個の元をもつ有限体 Fq 上で定義された非特異射影代数多様体 V の合同ゼータ関数 (congruent zeta function) Z(V, s)(または局所ゼータ関数 (local zeta function))とは、Nm を Fq の m 次拡大体 Fqm 上の V の(有理)点の数(定義方程式の解の個数)としたとき、 で定義される。変数変換 u = q-1 を行うと、これは u の形式的冪級数として で定義される。 あるいは同じことだが、 が定義に採用されることもある。言い換えると、合同ゼータ関数 Z(V, u) とは、有限体 F 上で V を定義する方程式の F の k 次拡大体 Fk における解の数の生成母関数が、Z(V, u) の対数微分となるような関数とも定義できる。 (ja)
- 数学において、q 個の元をもつ有限体 Fq 上で定義された非特異射影代数多様体 V の合同ゼータ関数 (congruent zeta function) Z(V, s)(または局所ゼータ関数 (local zeta function))とは、Nm を Fq の m 次拡大体 Fqm 上の V の(有理)点の数(定義方程式の解の個数)としたとき、 で定義される。変数変換 u = q-1 を行うと、これは u の形式的冪級数として で定義される。 あるいは同じことだが、 が定義に採用されることもある。言い換えると、合同ゼータ関数 Z(V, u) とは、有限体 F 上で V を定義する方程式の F の k 次拡大体 Fk における解の数の生成母関数が、Z(V, u) の対数微分となるような関数とも定義できる。 (ja)
|
rdfs:label
|
- 合同ゼータ関数 (ja)
- 合同ゼータ関数 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |