Property |
Value |
dbo:abstract
|
- 数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、英: differentiable function)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、尖点(カスプ)や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。 (ja)
- 数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、英: differentiable function)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、尖点(カスプ)や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4862 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、英: differentiable function)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、尖点(カスプ)や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。 (ja)
- 数学の一分野である微分積分学において、可微分函数あるいは微分可能関数(びぶんかのうかんすう、英: differentiable function)とは、その定義域内の各点において導関数が存在するような関数のことを言う。微分可能関数のグラフには、その定義域の各点において非垂直な接線が存在しなければならない。その結果として、微分可能関数のグラフは比較的なめらかなものとなり、途切れたり折れ曲がったりせず、尖点(カスプ)や、垂直接線を伴う点などは含まれない。 より一般に、ある関数 f の定義域内のある点 x0 に対し、導関数 f′(x0) が存在するとき、f は x0 において微分可能であるといわれる。そのような関数 f はまた、点 x0 の近くでは線型関数によってよく近似されるため、x0 において局所線型(locally linear)とも呼ばれる。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |