Data Table
PropertyValue
dbpedia-owl:abstract
  • スレイター行列式(スレイターぎょうれつしき、英: Slater determinant)とは、フェルミ粒子からなる多粒子系の状態を記述する波動関数を表すときに使われる行列式である。その名はジョン・クラーク・スレイターに因む。量子論では複数の同種粒子は原理的に区別できない(エンタングルしている)。よって複数の同種粒子を含む系の状態ベクトルは一定の対称性を持つものに限られる。その対称性は、任意の2個の粒子を入れ替えることに対して、ボーズ粒子では対称性をもつ波動関数、フェルミ粒子では反対称性をもつ波動関数という、少し不自然にも見える形で現れる。この不自然さは、個々の粒子に別々の「位置」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。スレイター行列式は、複数のフェルミ粒子系の波動関数が持っている反対称性と同じ性質を持っている。またスレイター行列式の線形結合も反対称性を満たす。よって多電子系などを表すときに、スレイター行列式は便利なのでよく用いられる。
dbpedia-owl:wikiPageID
  • 80981 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 5016 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 63 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 57865374 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • スレイター行列式(スレイターぎょうれつしき、英: Slater determinant)とは、フェルミ粒子からなる多粒子系の状態を記述する波動関数を表すときに使われる行列式である。その名はジョン・クラーク・スレイターに因む。量子論では複数の同種粒子は原理的に区別できない(エンタングルしている)。よって複数の同種粒子を含む系の状態ベクトルは一定の対称性を持つものに限られる。その対称性は、任意の2個の粒子を入れ替えることに対して、ボーズ粒子では対称性をもつ波動関数、フェルミ粒子では反対称性をもつ波動関数という、少し不自然にも見える形で現れる。この不自然さは、個々の粒子に別々の「位置」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。スレイター行列式は、複数のフェルミ粒子系の波動関数が持っている反対称性と同じ性質を持っている。またスレイター行列式の線形結合も反対称性を満たす。よって多電子系などを表すときに、スレイター行列式は便利なのでよく用いられる。
rdfs:label
  • スレイター行列式
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of