ハートリー近似(ハートリーきんじ)とは、多電子系の波動関数を求める代表的な近似法のひとつ。波動関数をスピン軌道の積で近似する。このとき非相対論的なハミルトニアンの期待値を極値にするようなスピン軌道の組は次の方程式の解になっている。 ここでは核電荷、は軌道に対応する軌道エネルギーと呼ばれる量である。左辺の第一項は電子の運動エネルギー、第二項は原子核からのクーロン場のポテンシャルエネルギー、第三項は自分自身を除く各電子からのクーロン斥力のポテンシャルエネルギーを表す。 この方程式、その解である軌道、およびその軌道の積でつくった多電子系の波動関数を、この方法の提案者の名前をとって、それぞれハートリー方程式、ハートリー軌道、ハートリー近似の波動関数と呼ぶ。 ハートリーの方程式は連立の微積分方程式であるので解くのは簡単ではない。ダグラス・ハートリーは原子の場合に電子間クーロン相互作用を表す項に中心力場近似を用い、かつ自己無撞着場の方法を用いて解を求めることに成功した。

Property Value
dbo:abstract
  • ハートリー近似(ハートリーきんじ)とは、多電子系の波動関数を求める代表的な近似法のひとつ。波動関数をスピン軌道の積で近似する。このとき非相対論的なハミルトニアンの期待値を極値にするようなスピン軌道の組は次の方程式の解になっている。 ここでは核電荷、は軌道に対応する軌道エネルギーと呼ばれる量である。左辺の第一項は電子の運動エネルギー、第二項は原子核からのクーロン場のポテンシャルエネルギー、第三項は自分自身を除く各電子からのクーロン斥力のポテンシャルエネルギーを表す。 この方程式、その解である軌道、およびその軌道の積でつくった多電子系の波動関数を、この方法の提案者の名前をとって、それぞれハートリー方程式、ハートリー軌道、ハートリー近似の波動関数と呼ぶ。 ハートリーの方程式は連立の微積分方程式であるので解くのは簡単ではない。ダグラス・ハートリーは原子の場合に電子間クーロン相互作用を表す項に中心力場近似を用い、かつ自己無撞着場の方法を用いて解を求めることに成功した。 (ja)
  • ハートリー近似(ハートリーきんじ)とは、多電子系の波動関数を求める代表的な近似法のひとつ。波動関数をスピン軌道の積で近似する。このとき非相対論的なハミルトニアンの期待値を極値にするようなスピン軌道の組は次の方程式の解になっている。 ここでは核電荷、は軌道に対応する軌道エネルギーと呼ばれる量である。左辺の第一項は電子の運動エネルギー、第二項は原子核からのクーロン場のポテンシャルエネルギー、第三項は自分自身を除く各電子からのクーロン斥力のポテンシャルエネルギーを表す。 この方程式、その解である軌道、およびその軌道の積でつくった多電子系の波動関数を、この方法の提案者の名前をとって、それぞれハートリー方程式、ハートリー軌道、ハートリー近似の波動関数と呼ぶ。 ハートリーの方程式は連立の微積分方程式であるので解くのは簡単ではない。ダグラス・ハートリーは原子の場合に電子間クーロン相互作用を表す項に中心力場近似を用い、かつ自己無撞着場の方法を用いて解を求めることに成功した。 (ja)
dbo:wikiPageID
  • 2689428 (xsd:integer)
dbo:wikiPageLength
  • 1212 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 76120872 (xsd:integer)
dbo:wikiPageWikiLink
dct:subject
rdfs:comment
  • ハートリー近似(ハートリーきんじ)とは、多電子系の波動関数を求める代表的な近似法のひとつ。波動関数をスピン軌道の積で近似する。このとき非相対論的なハミルトニアンの期待値を極値にするようなスピン軌道の組は次の方程式の解になっている。 ここでは核電荷、は軌道に対応する軌道エネルギーと呼ばれる量である。左辺の第一項は電子の運動エネルギー、第二項は原子核からのクーロン場のポテンシャルエネルギー、第三項は自分自身を除く各電子からのクーロン斥力のポテンシャルエネルギーを表す。 この方程式、その解である軌道、およびその軌道の積でつくった多電子系の波動関数を、この方法の提案者の名前をとって、それぞれハートリー方程式、ハートリー軌道、ハートリー近似の波動関数と呼ぶ。 ハートリーの方程式は連立の微積分方程式であるので解くのは簡単ではない。ダグラス・ハートリーは原子の場合に電子間クーロン相互作用を表す項に中心力場近似を用い、かつ自己無撞着場の方法を用いて解を求めることに成功した。 (ja)
  • ハートリー近似(ハートリーきんじ)とは、多電子系の波動関数を求める代表的な近似法のひとつ。波動関数をスピン軌道の積で近似する。このとき非相対論的なハミルトニアンの期待値を極値にするようなスピン軌道の組は次の方程式の解になっている。 ここでは核電荷、は軌道に対応する軌道エネルギーと呼ばれる量である。左辺の第一項は電子の運動エネルギー、第二項は原子核からのクーロン場のポテンシャルエネルギー、第三項は自分自身を除く各電子からのクーロン斥力のポテンシャルエネルギーを表す。 この方程式、その解である軌道、およびその軌道の積でつくった多電子系の波動関数を、この方法の提案者の名前をとって、それぞれハートリー方程式、ハートリー軌道、ハートリー近似の波動関数と呼ぶ。 ハートリーの方程式は連立の微積分方程式であるので解くのは簡単ではない。ダグラス・ハートリーは原子の場合に電子間クーロン相互作用を表す項に中心力場近似を用い、かつ自己無撞着場の方法を用いて解を求めることに成功した。 (ja)
rdfs:label
  • ハートリー近似 (ja)
  • ハートリー近似 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of