局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所的性質をうまく利用することによってポスト-ハートリー-フォック電子構造計算を迅速化することもできる。周期的境界条件を持つ系における局在化軌道はワニエ関数として知られている。 標準的なab initio量子化学法では、一般的に分子全体に拡がり、分子の対称性を有する非局在化軌道が得られる。局在化軌道は次に非局在化軌道の線形結合として見出すことができ、これは適切なユニタリ変換で与えられる。 例として水分子を挙げると、ab initio計算では結合の特性は主に2つの分子軌道で示される。それぞれは2つのO-H結合間で等しく分布した電子密度を有している。一方のO-H結合に対応する局在化軌道はこれら2つの非局在化軌道の和であり、もう一方のO-H結合に対応する局在化軌道はこれらの差である。

Property Value
dbo:abstract
  • 局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所的性質をうまく利用することによってポスト-ハートリー-フォック電子構造計算を迅速化することもできる。周期的境界条件を持つ系における局在化軌道はワニエ関数として知られている。 標準的なab initio量子化学法では、一般的に分子全体に拡がり、分子の対称性を有する非局在化軌道が得られる。局在化軌道は次に非局在化軌道の線形結合として見出すことができ、これは適切なユニタリ変換で与えられる。 例として水分子を挙げると、ab initio計算では結合の特性は主に2つの分子軌道で示される。それぞれは2つのO-H結合間で等しく分布した電子密度を有している。一方のO-H結合に対応する局在化軌道はこれら2つの非局在化軌道の和であり、もう一方のO-H結合に対応する局在化軌道はこれらの差である。 多重結合と孤立電子対に対して、異なる局在化手法は異なるオービタルを与える。Boysの局在化法とEdmiston-Ruedenberg局在化法はこれらのオービタルを混合し、エチレンでは等価な曲がった結合、水では「ウサギの耳」に似た孤立電子対を与えるのに対して、Pipek-Mezey法はそれぞれのσおよびπ対称性を維持する。 (ja)
  • 局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所的性質をうまく利用することによってポスト-ハートリー-フォック電子構造計算を迅速化することもできる。周期的境界条件を持つ系における局在化軌道はワニエ関数として知られている。 標準的なab initio量子化学法では、一般的に分子全体に拡がり、分子の対称性を有する非局在化軌道が得られる。局在化軌道は次に非局在化軌道の線形結合として見出すことができ、これは適切なユニタリ変換で与えられる。 例として水分子を挙げると、ab initio計算では結合の特性は主に2つの分子軌道で示される。それぞれは2つのO-H結合間で等しく分布した電子密度を有している。一方のO-H結合に対応する局在化軌道はこれら2つの非局在化軌道の和であり、もう一方のO-H結合に対応する局在化軌道はこれらの差である。 多重結合と孤立電子対に対して、異なる局在化手法は異なるオービタルを与える。Boysの局在化法とEdmiston-Ruedenberg局在化法はこれらのオービタルを混合し、エチレンでは等価な曲がった結合、水では「ウサギの耳」に似た孤立電子対を与えるのに対して、Pipek-Mezey法はそれぞれのσおよびπ対称性を維持する。 (ja)
dbo:wikiPageID
  • 2660412 (xsd:integer)
dbo:wikiPageLength
  • 2892 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 69009241 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所的性質をうまく利用することによってポスト-ハートリー-フォック電子構造計算を迅速化することもできる。周期的境界条件を持つ系における局在化軌道はワニエ関数として知られている。 標準的なab initio量子化学法では、一般的に分子全体に拡がり、分子の対称性を有する非局在化軌道が得られる。局在化軌道は次に非局在化軌道の線形結合として見出すことができ、これは適切なユニタリ変換で与えられる。 例として水分子を挙げると、ab initio計算では結合の特性は主に2つの分子軌道で示される。それぞれは2つのO-H結合間で等しく分布した電子密度を有している。一方のO-H結合に対応する局在化軌道はこれら2つの非局在化軌道の和であり、もう一方のO-H結合に対応する局在化軌道はこれらの差である。 (ja)
  • 局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所的性質をうまく利用することによってポスト-ハートリー-フォック電子構造計算を迅速化することもできる。周期的境界条件を持つ系における局在化軌道はワニエ関数として知られている。 標準的なab initio量子化学法では、一般的に分子全体に拡がり、分子の対称性を有する非局在化軌道が得られる。局在化軌道は次に非局在化軌道の線形結合として見出すことができ、これは適切なユニタリ変換で与えられる。 例として水分子を挙げると、ab initio計算では結合の特性は主に2つの分子軌道で示される。それぞれは2つのO-H結合間で等しく分布した電子密度を有している。一方のO-H結合に対応する局在化軌道はこれら2つの非局在化軌道の和であり、もう一方のO-H結合に対応する局在化軌道はこれらの差である。 (ja)
rdfs:label
  • 局在化分子軌道 (ja)
  • 局在化分子軌道 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of