エネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、英語: energy-momentum tensor、stress-energy tensor、stress-energy-momentum tensor)とは、質量密度、エネルギー密度、、、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源(source term)としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、 とすればよい。 エネルギー・運動量テンソル は、定義から明らかに対称テンソルである。 以下では、時間座標を0成分とし、空間座標を1,2,3成分とする添字を使い、計量(metric)の符号はとする。また、アインシュタインの縮約記法を用いる。 共変微分をもちいて とすれば、これは、共変形式のエネルギー・運動量保存則を表すことになる。

Property Value
dbo:abstract
  • エネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、英語: energy-momentum tensor、stress-energy tensor、stress-energy-momentum tensor)とは、質量密度、エネルギー密度、、、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源(source term)としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、 とすればよい。 エネルギー・運動量テンソル は、定義から明らかに対称テンソルである。 以下では、時間座標を0成分とし、空間座標を1,2,3成分とする添字を使い、計量(metric)の符号はとする。また、アインシュタインの縮約記法を用いる。 共変微分をもちいて とすれば、これは、共変形式のエネルギー・運動量保存則を表すことになる。 (ja)
  • エネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、英語: energy-momentum tensor、stress-energy tensor、stress-energy-momentum tensor)とは、質量密度、エネルギー密度、、、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源(source term)としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、 とすればよい。 エネルギー・運動量テンソル は、定義から明らかに対称テンソルである。 以下では、時間座標を0成分とし、空間座標を1,2,3成分とする添字を使い、計量(metric)の符号はとする。また、アインシュタインの縮約記法を用いる。 共変微分をもちいて とすれば、これは、共変形式のエネルギー・運動量保存則を表すことになる。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 634426 (xsd:integer)
dbo:wikiPageLength
  • 5460 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90153301 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • エネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、英語: energy-momentum tensor、stress-energy tensor、stress-energy-momentum tensor)とは、質量密度、エネルギー密度、、、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源(source term)としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、 とすればよい。 エネルギー・運動量テンソル は、定義から明らかに対称テンソルである。 以下では、時間座標を0成分とし、空間座標を1,2,3成分とする添字を使い、計量(metric)の符号はとする。また、アインシュタインの縮約記法を用いる。 共変微分をもちいて とすれば、これは、共変形式のエネルギー・運動量保存則を表すことになる。 (ja)
  • エネルギー・運動量テンソル(エネルギー・うんどうりょうテンソル、英語: energy-momentum tensor、stress-energy tensor、stress-energy-momentum tensor)とは、質量密度、エネルギー密度、、、応力を相対性理論に基づいた形式で記述した物理量である。 一般相対性理論において、アインシュタイン方程式の物質分布を示す項として登場し、重力を生じさせる源(source term)としての意味を持つ。 エネルギー・運動量テンソルは二階のテンソルであり、記号は で表されることが多い。アインシュタイン方程式で、真空の状況を考える時は、 とすればよい。 エネルギー・運動量テンソル は、定義から明らかに対称テンソルである。 以下では、時間座標を0成分とし、空間座標を1,2,3成分とする添字を使い、計量(metric)の符号はとする。また、アインシュタインの縮約記法を用いる。 共変微分をもちいて とすれば、これは、共変形式のエネルギー・運動量保存則を表すことになる。 (ja)
rdfs:label
  • エネルギー・運動量テンソル (ja)
  • エネルギー・運動量テンソル (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of