抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a | b または a | c であるようなときに、素元と呼ばれる。)整域において、素元は既約元である。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、D が GCD 整域であり、x が D の既約元であれば、x で生成されたイデアルは D の素イデアル(したがって既約イデアル)である。

Property Value
dbo:abstract
  • 抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a | b または a | c であるようなときに、素元と呼ばれる。)整域において、素元は既約元である。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、D が GCD 整域であり、x が D の既約元であれば、x で生成されたイデアルは D の素イデアル(したがって既約イデアル)である。 (ja)
  • 抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a | b または a | c であるようなときに、素元と呼ばれる。)整域において、素元は既約元である。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、D が GCD 整域であり、x が D の既約元であれば、x で生成されたイデアルは D の素イデアル(したがって既約イデアル)である。 (ja)
dbo:wikiPageID
  • 3072619 (xsd:integer)
dbo:wikiPageLength
  • 2128 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 85993820 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a | b または a | c であるようなときに、素元と呼ばれる。)整域において、素元は既約元である。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、D が GCD 整域であり、x が D の既約元であれば、x で生成されたイデアルは D の素イデアル(したがって既約イデアル)である。 (ja)
  • 抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(英: irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 R の0でも単元でもない元 a は、R のある元 b と c に対して a | bc であるときにはいつでも a | b または a | c であるようなときに、素元と呼ばれる。)整域において、素元は既約元である。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、D が GCD 整域であり、x が D の既約元であれば、x で生成されたイデアルは D の素イデアル(したがって既約イデアル)である。 (ja)
rdfs:label
  • 既約元 (ja)
  • 既約元 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of