数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、英: symbol of a differential operator)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。

Property Value
dbo:abstract
  • 数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、英: symbol of a differential operator)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。 (ja)
  • 数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、英: symbol of a differential operator)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。 (ja)
dbo:wikiPageID
  • 2729742 (xsd:integer)
dbo:wikiPageLength
  • 4056 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 69310300 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、英: symbol of a differential operator)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。 (ja)
  • 数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、英: symbol of a differential operator)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。 (ja)
rdfs:label
  • 微分作用素の表象 (ja)
  • 微分作用素の表象 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of