数学では、特にでは、ジョン・ウィラード・ミルナー(John Willard Milnor)の名前にちなんだミルナー数(Milner number)は、函数の芽(germ)の不変量である。 f を複素数に値をとる正則函数の芽とすると、f のミルナー数は μ(f) と書いてゼロかまたは正の整数であるか無限大の値をとる。ミルナー数は微分幾何学的な不変量とも考えられるし、代数幾何学的な不変量とも考えられる。これが何故、代数幾何学やで重要な役割を果たすのであろうか?