数学におけるフレシェ微分(フレシェびぶん、英: Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむバナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および)で非線型問題に応用を持つ。

Property Value
dbo:abstract
  • 数学におけるフレシェ微分(フレシェびぶん、英: Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむバナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および)で非線型問題に応用を持つ。 (ja)
  • 数学におけるフレシェ微分(フレシェびぶん、英: Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむバナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および)で非線型問題に応用を持つ。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2580605 (xsd:integer)
dbo:wikiPageLength
  • 8774 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92071638 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるフレシェ微分(フレシェびぶん、英: Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむバナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および)で非線型問題に応用を持つ。 (ja)
  • 数学におけるフレシェ微分(フレシェびぶん、英: Fréchet derivative)は、モーリス・ルネ・フレシェの名にちなむバナッハ空間上で定義される微分法の一種である。フレシェ微分は、実一変数の実数値函数の導函数を、実多変数のベクトル値函数の場合へ一般化するのに広く用いられ、また変分法で広範に用いられる汎函数微分を定義するのにもつかわれる。 一般に、これは実一変数実数値函数の微分の概念をバナッハ空間上の写像へ拡張するものであり、より一般のガトー微分(古典的な方向微分の一般化)とは対比されるべきものである。 フレシェ微分は解析学や物理科学の至る所(特に、変分法、非線型解析学の多く、および)で非線型問題に応用を持つ。 (ja)
rdfs:label
  • フレシェ微分 (ja)
  • フレシェ微分 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of