常磁性物質においては、 その物質の磁化は、(ほぼ)かけられた磁場に正比例する。しかし、もし物質が熱せられていると、この線形性は消失する: 一定の磁場については、磁化は(ほぼ)温度に反比例する。この事実はキュリーの法則(英語: Curie's law)にまとめられる: ここで * は発生する磁化 * は磁場(単位はテスラ) * は絶対温度(単位はケルビン) * は物質固有のキュリー定数。 また、磁化率を用いて以下のように書くこともできる。 この関係は1895年にピエール・キュリーにより(実験結果が想定されるモデルに適合するように調整されつつ)実験的に発見された。その後、ポール・ランジュバンが理論的に導出した(以下を参照)。そのため、キュリー・ランジュバンの法則とも呼ばれる。 この法則は高温または弱い磁場についてのみ成り立つ。以下で導く通り、低温または強磁場のような反対側の極限では磁化は飽和する。 なお、強磁性体や反強磁性体では、キュリーの法則を拡張したキュリー・ワイスの法則が(ほぼ)成り立っている。

Property Value
dbo:abstract
  • 常磁性物質においては、 その物質の磁化は、(ほぼ)かけられた磁場に正比例する。しかし、もし物質が熱せられていると、この線形性は消失する: 一定の磁場については、磁化は(ほぼ)温度に反比例する。この事実はキュリーの法則(英語: Curie's law)にまとめられる: ここで * は発生する磁化 * は磁場(単位はテスラ) * は絶対温度(単位はケルビン) * は物質固有のキュリー定数。 また、磁化率を用いて以下のように書くこともできる。 この関係は1895年にピエール・キュリーにより(実験結果が想定されるモデルに適合するように調整されつつ)実験的に発見された。その後、ポール・ランジュバンが理論的に導出した(以下を参照)。そのため、キュリー・ランジュバンの法則とも呼ばれる。 この法則は高温または弱い磁場についてのみ成り立つ。以下で導く通り、低温または強磁場のような反対側の極限では磁化は飽和する。 なお、強磁性体や反強磁性体では、キュリーの法則を拡張したキュリー・ワイスの法則が(ほぼ)成り立っている。 (ja)
  • 常磁性物質においては、 その物質の磁化は、(ほぼ)かけられた磁場に正比例する。しかし、もし物質が熱せられていると、この線形性は消失する: 一定の磁場については、磁化は(ほぼ)温度に反比例する。この事実はキュリーの法則(英語: Curie's law)にまとめられる: ここで * は発生する磁化 * は磁場(単位はテスラ) * は絶対温度(単位はケルビン) * は物質固有のキュリー定数。 また、磁化率を用いて以下のように書くこともできる。 この関係は1895年にピエール・キュリーにより(実験結果が想定されるモデルに適合するように調整されつつ)実験的に発見された。その後、ポール・ランジュバンが理論的に導出した(以下を参照)。そのため、キュリー・ランジュバンの法則とも呼ばれる。 この法則は高温または弱い磁場についてのみ成り立つ。以下で導く通り、低温または強磁場のような反対側の極限では磁化は飽和する。 なお、強磁性体や反強磁性体では、キュリーの法則を拡張したキュリー・ワイスの法則が(ほぼ)成り立っている。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 1610993 (xsd:integer)
dbo:wikiPageLength
  • 4975 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91224708 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 常磁性物質においては、 その物質の磁化は、(ほぼ)かけられた磁場に正比例する。しかし、もし物質が熱せられていると、この線形性は消失する: 一定の磁場については、磁化は(ほぼ)温度に反比例する。この事実はキュリーの法則(英語: Curie's law)にまとめられる: ここで * は発生する磁化 * は磁場(単位はテスラ) * は絶対温度(単位はケルビン) * は物質固有のキュリー定数。 また、磁化率を用いて以下のように書くこともできる。 この関係は1895年にピエール・キュリーにより(実験結果が想定されるモデルに適合するように調整されつつ)実験的に発見された。その後、ポール・ランジュバンが理論的に導出した(以下を参照)。そのため、キュリー・ランジュバンの法則とも呼ばれる。 この法則は高温または弱い磁場についてのみ成り立つ。以下で導く通り、低温または強磁場のような反対側の極限では磁化は飽和する。 なお、強磁性体や反強磁性体では、キュリーの法則を拡張したキュリー・ワイスの法則が(ほぼ)成り立っている。 (ja)
  • 常磁性物質においては、 その物質の磁化は、(ほぼ)かけられた磁場に正比例する。しかし、もし物質が熱せられていると、この線形性は消失する: 一定の磁場については、磁化は(ほぼ)温度に反比例する。この事実はキュリーの法則(英語: Curie's law)にまとめられる: ここで * は発生する磁化 * は磁場(単位はテスラ) * は絶対温度(単位はケルビン) * は物質固有のキュリー定数。 また、磁化率を用いて以下のように書くこともできる。 この関係は1895年にピエール・キュリーにより(実験結果が想定されるモデルに適合するように調整されつつ)実験的に発見された。その後、ポール・ランジュバンが理論的に導出した(以下を参照)。そのため、キュリー・ランジュバンの法則とも呼ばれる。 この法則は高温または弱い磁場についてのみ成り立つ。以下で導く通り、低温または強磁場のような反対側の極限では磁化は飽和する。 なお、強磁性体や反強磁性体では、キュリーの法則を拡張したキュリー・ワイスの法則が(ほぼ)成り立っている。 (ja)
rdfs:label
  • キュリーの法則 (ja)
  • キュリーの法則 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of