逆2乗の法則(ぎゃくにじょうのほうそく、英: inverse square law)とは、物理量の大きさがその発生源からの距離の2乗に反比例するという法則である。 逆2乗とは2乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆2乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。

Property Value
dbo:abstract
  • 逆2乗の法則(ぎゃくにじょうのほうそく、英: inverse square law)とは、物理量の大きさがその発生源からの距離の2乗に反比例するという法則である。 逆2乗とは2乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆2乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つこと、特に指数が 2 であることには、我々のいる空間が3次元であり等方的であることと密接に関係している。空間の各点で測定できる物理量について、それがある発生源から生じる流体のようなものと見なせる場合、発生源から偏りなく流出する物質からの類推により、発生源を囲む球面を通過する物質の量は、球面の大きさによらず一定であると考えることができる。したがって球面を通過する物質の密度は球面の面積に反比例して小さくなる。発生源が球殻の中心にあるとすれば、球面の大きさは発生源から球面までの距離の2乗に比例するから、球面を通過する物質の密度は球面と発生源の距離の2乗に反比例する。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 逆2乗の法則が成り立つのは大抵、ある一つの発生源に注目した場合である。たとえば異なる天体の表面重力を比較する際には注意が必要である。構成物質の似通った天体同士では表面重力の大きさは天体の半径に対する逆2乗則に従わず、自転による遠心力の影響を除けば、表面重力の大きさは半径に概ね比例する。これは、重力の大きさが天体の質量に比例し、同程度の密度を持つ天体の質量を比較すると、天体の質量は天体の体積に比例するためである。 (ja)
  • 逆2乗の法則(ぎゃくにじょうのほうそく、英: inverse square law)とは、物理量の大きさがその発生源からの距離の2乗に反比例するという法則である。 逆2乗とは2乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆2乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つこと、特に指数が 2 であることには、我々のいる空間が3次元であり等方的であることと密接に関係している。空間の各点で測定できる物理量について、それがある発生源から生じる流体のようなものと見なせる場合、発生源から偏りなく流出する物質からの類推により、発生源を囲む球面を通過する物質の量は、球面の大きさによらず一定であると考えることができる。したがって球面を通過する物質の密度は球面の面積に反比例して小さくなる。発生源が球殻の中心にあるとすれば、球面の大きさは発生源から球面までの距離の2乗に比例するから、球面を通過する物質の密度は球面と発生源の距離の2乗に反比例する。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 逆2乗の法則が成り立つのは大抵、ある一つの発生源に注目した場合である。たとえば異なる天体の表面重力を比較する際には注意が必要である。構成物質の似通った天体同士では表面重力の大きさは天体の半径に対する逆2乗則に従わず、自転による遠心力の影響を除けば、表面重力の大きさは半径に概ね比例する。これは、重力の大きさが天体の質量に比例し、同程度の密度を持つ天体の質量を比較すると、天体の質量は天体の体積に比例するためである。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 35380 (xsd:integer)
dbo:wikiPageLength
  • 3984 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 87447167 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 逆2乗の法則(ぎゃくにじょうのほうそく、英: inverse square law)とは、物理量の大きさがその発生源からの距離の2乗に反比例するという法則である。 逆2乗とは2乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆2乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 (ja)
  • 逆2乗の法則(ぎゃくにじょうのほうそく、英: inverse square law)とは、物理量の大きさがその発生源からの距離の2乗に反比例するという法則である。 逆2乗とは2乗の逆数のことであり、この法則はしばしば、ある物理量の大きさがその発生源からの距離の逆2乗に比例する、という形でも述べられる。逆2乗の法則はしばしば短縮して逆2乗則とも呼ばれる。 逆2乗の法則は冪乗則の一種であり、様々な物理現象の中に見出すことができる。以下の節では自然科学と物理学の歴史の中で特に重要な例について述べる。逆2乗の法則の発見により、物理学者は何らかの変化を認めたとき、その発生源と発生源との距離の関係を調べ、それらが逆2乗の法則に当てはまるかどうかに関心を持つようになった。 逆2乗の法則が成り立つことは、発生源の形状に強く依存している。逆2乗の法則が成り立つのは発生源が点や真球と見なせる場合であり、例えば棒状の光源に対しては逆2乗の法則は成り立たない。一般には、発生源の細かな構造を無視できる程度の距離においてのみ、より具体的には発生源の大きさに比べて非常に遠距離の領域で逆2乗の法則が成り立つ。 (ja)
rdfs:label
  • 逆2乗の法則 (ja)
  • 逆2乗の法則 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of