最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。

Property Value
dbo:abstract
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 (ja)
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 351073 (xsd:integer)
dbo:wikiPageLength
  • 10904 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91240133 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 (ja)
  • 最尤推定(さいゆうすいてい、英: maximum likelihood estimationという)や最尤法(さいゆうほう、英: method of maximum likelihood)とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。 この方法はロナルド・フィッシャーが1912年から1922年にかけて開発した。 観測されたデータからそれを生んだ母集団を説明しようとする際に広く用いられる。生物学では塩基やアミノ酸配列のような分子データの置換に関する確率モデルに基づいて系統樹を作成する際に、一番尤もらしくデータを説明する樹形を選択するための有力な方法としても利用される。機械学習ではニューラルネットワーク(特に生成モデル)を学習する際に最尤推定(負の対数尤度最小化として定式化)が用いられる。 (ja)
rdfs:label
  • 最尤推定 (ja)
  • 最尤推定 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of