放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散やなどを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 は、次の条件を満たすとき放物型であると言われる: この定義は、平面の放物線の定義と似たものである。 放物型偏微分方程式の簡単な例として、一次元の熱方程式 が挙げられる。ここで、 は時間 における位置 の温度を表し、 は定数とする。 は、時間変数 に関する の偏微分を表し、 は同様に空間変数 に関する の二階の偏微分を表す。 この方程式は、大雑把に言うと、ある与えられた点のある時間における温度は、その点の温度と、その周辺の点の温度の平均の差に比例して、上昇あるいは低下する、ということを意味している。 は、調和関数の平均値の性質を満たす状態から、どのくらい温度が離れているか、ということを示す量となっている。 熱方程式の一般化は、次のように表される: ここで は二階の楕円型作用素である( はまた正作用素でなければならない。非正であるような場合については、下で述べられている)。このような系は、次の形式で表される方程式の中に含まれている: ただし、行列値関数 の核は次元 1 であるとする。

Property Value
dbo:abstract
  • 放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散やなどを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 は、次の条件を満たすとき放物型であると言われる: この定義は、平面の放物線の定義と似たものである。 放物型偏微分方程式の簡単な例として、一次元の熱方程式 が挙げられる。ここで、 は時間 における位置 の温度を表し、 は定数とする。 は、時間変数 に関する の偏微分を表し、 は同様に空間変数 に関する の二階の偏微分を表す。 この方程式は、大雑把に言うと、ある与えられた点のある時間における温度は、その点の温度と、その周辺の点の温度の平均の差に比例して、上昇あるいは低下する、ということを意味している。 は、調和関数の平均値の性質を満たす状態から、どのくらい温度が離れているか、ということを示す量となっている。 熱方程式の一般化は、次のように表される: ここで は二階の楕円型作用素である( はまた正作用素でなければならない。非正であるような場合については、下で述べられている)。このような系は、次の形式で表される方程式の中に含まれている: ただし、行列値関数 の核は次元 1 であるとする。 (ja)
  • 放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散やなどを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 は、次の条件を満たすとき放物型であると言われる: この定義は、平面の放物線の定義と似たものである。 放物型偏微分方程式の簡単な例として、一次元の熱方程式 が挙げられる。ここで、 は時間 における位置 の温度を表し、 は定数とする。 は、時間変数 に関する の偏微分を表し、 は同様に空間変数 に関する の二階の偏微分を表す。 この方程式は、大雑把に言うと、ある与えられた点のある時間における温度は、その点の温度と、その周辺の点の温度の平均の差に比例して、上昇あるいは低下する、ということを意味している。 は、調和関数の平均値の性質を満たす状態から、どのくらい温度が離れているか、ということを示す量となっている。 熱方程式の一般化は、次のように表される: ここで は二階の楕円型作用素である( はまた正作用素でなければならない。非正であるような場合については、下で述べられている)。このような系は、次の形式で表される方程式の中に含まれている: ただし、行列値関数 の核は次元 1 であるとする。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2716937 (xsd:integer)
dbo:wikiPageLength
  • 3274 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 82354610 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:bot
  • InternetArchiveBot (ja)
  • InternetArchiveBot (ja)
prop-en:date
  • 2017 (xsd:integer)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散やなどを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 は、次の条件を満たすとき放物型であると言われる: この定義は、平面の放物線の定義と似たものである。 放物型偏微分方程式の簡単な例として、一次元の熱方程式 が挙げられる。ここで、 は時間 における位置 の温度を表し、 は定数とする。 は、時間変数 に関する の偏微分を表し、 は同様に空間変数 に関する の二階の偏微分を表す。 この方程式は、大雑把に言うと、ある与えられた点のある時間における温度は、その点の温度と、その周辺の点の温度の平均の差に比例して、上昇あるいは低下する、ということを意味している。 は、調和関数の平均値の性質を満たす状態から、どのくらい温度が離れているか、ということを示す量となっている。 熱方程式の一般化は、次のように表される: ここで は二階の楕円型作用素である( はまた正作用素でなければならない。非正であるような場合については、下で述べられている)。このような系は、次の形式で表される方程式の中に含まれている: ただし、行列値関数 の核は次元 1 であるとする。 (ja)
  • 放物型偏微分方程式(ほうぶつがたへんびぶんほうていしき、英: parabolic partial differential equation)とは、二階の偏微分方程式(PDE)の一種で、熱拡散やなどを含む様々な科学の問題に現れるものである。 次の形式で記述される偏微分方程式 は、次の条件を満たすとき放物型であると言われる: この定義は、平面の放物線の定義と似たものである。 放物型偏微分方程式の簡単な例として、一次元の熱方程式 が挙げられる。ここで、 は時間 における位置 の温度を表し、 は定数とする。 は、時間変数 に関する の偏微分を表し、 は同様に空間変数 に関する の二階の偏微分を表す。 この方程式は、大雑把に言うと、ある与えられた点のある時間における温度は、その点の温度と、その周辺の点の温度の平均の差に比例して、上昇あるいは低下する、ということを意味している。 は、調和関数の平均値の性質を満たす状態から、どのくらい温度が離れているか、ということを示す量となっている。 熱方程式の一般化は、次のように表される: ここで は二階の楕円型作用素である( はまた正作用素でなければならない。非正であるような場合については、下で述べられている)。このような系は、次の形式で表される方程式の中に含まれている: ただし、行列値関数 の核は次元 1 であるとする。 (ja)
rdfs:label
  • 放物型偏微分方程式 (ja)
  • 放物型偏微分方程式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of