全域木(ぜんいきぎ、英: Spanning tree)、極大木(きょくだいき)、スパニング木、スパニングツリーとは、グラフ理論において、以下のように定義される木のことである。 グラフ G(V,E) において T ⊆ E となる辺集合 T があるとき、グラフ S(V,T) が木(閉路を持たないグラフ)であるなら、 S(V,T) のことをグラフ G(V,E) の全域木であるとする。 つまり、あるグラフの全ての頂点とそのグラフを構成する辺の一部分のみで構成される木のことである。