数学において、ルベーグの微分定理(ルベーグのびぶんていり、英: Lebesgue differentiation theorem)は、実解析の定理の一つで、ほとんど全ての点に対して可積分函数の値がその点の周りの無限小平均(無限小近傍でとった平均値)の極限に等しいことを述べる。名称はアンリ・ルベーグにちなむ。