シュレーフリ記号(シュレーフリきごう、Schläfli symbol)は、正多胞体を {p,q,r,...} の形で記述する記法。なお日本語ではシュレーフリの記号とも言うが、Schläfli's symbolとはあまり言わない。19世紀スイスの幾何学者 (Ludwig Schläfli (en), 1814-1895) が発案した。 正多胞体とは、正多角形・正多面体の一般次元への一般化である。なお、線分は1次元、正多角形は2次元、正多面体は3次元の正多胞体とみなす。また、と正空間充填形を正多胞体に含めて述べる(ただし、正空間充填形は1つ上の次元の正多胞体とみなす)。たとえば、3次元では星型正多面体と正平面充填形を正多面体に含める。 を記述できる拡張シュレーフリ記号 (extended Schläfli symbol) を含めてシュレーフリ記号と言うこともあるが、ここではまず狭義のシュレーフリ記号について述べ、拡張シュレーフリ記号については最後に述べる。