数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。

Property Value
dbo:abstract
  • 数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。 (ja)
  • 数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 127418 (xsd:integer)
dbo:wikiPageLength
  • 5766 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91213406 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Cauchy's Inequality (ja)
  • Schwarz's Inequality (ja)
  • シュワルツの不等式とそのエレガントな証明 (ja)
  • Cauchy's Inequality (ja)
  • Schwarz's Inequality (ja)
  • シュワルツの不等式とそのエレガントな証明 (ja)
prop-en:urlname
  • CauchysInequality (ja)
  • SchwarzsInequality (ja)
  • schwarz (ja)
  • CauchysInequality (ja)
  • SchwarzsInequality (ja)
  • schwarz (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。 (ja)
  • 数学におけるコーシー=シュワルツの不等式(コーシーシュワルツのふとうしき、英: Cauchy–Schwarz inequality)、シュワルツの不等式、シュヴァルツの不等式あるいはコーシー=ブニャコフスキー=シュワルツの不等式 (Cauchy–Bunyakovski–Schwarz inequality) とは、内積空間における二つのベクトルの間の内積がとりうる値をそれぞれのベクトルのノルムによって評価する不等式である。線型代数学や関数解析学における有限次元および無限次元のベクトルに対するさまざまな内積や、確率論における分散や共分散に適用されるなど、様々な異なる状況で現れる有用な不等式である。 数列に対する不等式はオーギュスタン=ルイ・コーシーによって1821年に、積分系での不等式はまずヴィクトール・ブニャコフスキーによって1859年に発見された後ヘルマン・アマンドゥス・シュワルツによって1888年に再発見された。 (ja)
rdfs:label
  • コーシー=シュワルツの不等式 (ja)
  • コーシー=シュワルツの不等式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-en:knownFor of
is owl:sameAs of
is foaf:primaryTopic of