コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれるが、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた。 2019年12月、テレンス・タオはコラッツの問題がほとんどすべての正の整数においてほとんど正しいとする論文を発表した。

Property Value
dbo:abstract
  • コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれるが、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた。 2019年12月、テレンス・タオはコラッツの問題がほとんどすべての正の整数においてほとんど正しいとする論文を発表した。 (ja)
  • コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれるが、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた。 2019年12月、テレンス・タオはコラッツの問題がほとんどすべての正の整数においてほとんど正しいとする論文を発表した。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 415796 (xsd:integer)
dbo:wikiPageLength
  • 26130 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91533341 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:date
  • 20011123190651 (xsd:decimal)
prop-ja:title
  • Collatz Problem (ja)
  • コラッツ予想 (ja)
  • Collatz Problem (ja)
  • コラッツ予想 (ja)
prop-ja:url
prop-ja:urlname
  • CollatzProblem (ja)
  • CollatzProblem (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれるが、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた。 2019年12月、テレンス・タオはコラッツの問題がほとんどすべての正の整数においてほとんど正しいとする論文を発表した。 (ja)
  • コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれるが、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた。 2019年12月、テレンス・タオはコラッツの問題がほとんどすべての正の整数においてほとんど正しいとする論文を発表した。 (ja)
rdfs:label
  • コラッツの問題 (ja)
  • コラッツの問題 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of