Property |
Value |
dbo:abstract
|
- 統計学において、確率変数の列あるいはベクトルを構成する全ての確率変数が, 等しい有限分散を持つとき, それらは等分散(とうぶんさん)である。英語では homoscedasticity あるいは homogeneity of variance と呼ばれる。逆は (Heteroscedasticity) あるいは分散不均一性である。 等分散性の仮定は、数学的あるいは計算機的処理を単純化する。等分散性の重大な違反(実際は不等分散であるデータの分布を等分散と仮定する)は、ピアソン係数によって計測される適合度の過大評価をもたらす。 (ja)
- 統計学において、確率変数の列あるいはベクトルを構成する全ての確率変数が, 等しい有限分散を持つとき, それらは等分散(とうぶんさん)である。英語では homoscedasticity あるいは homogeneity of variance と呼ばれる。逆は (Heteroscedasticity) あるいは分散不均一性である。 等分散性の仮定は、数学的あるいは計算機的処理を単純化する。等分散性の重大な違反(実際は不等分散であるデータの分布を等分散と仮定する)は、ピアソン係数によって計測される適合度の過大評価をもたらす。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1626 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 統計学において、確率変数の列あるいはベクトルを構成する全ての確率変数が, 等しい有限分散を持つとき, それらは等分散(とうぶんさん)である。英語では homoscedasticity あるいは homogeneity of variance と呼ばれる。逆は (Heteroscedasticity) あるいは分散不均一性である。 等分散性の仮定は、数学的あるいは計算機的処理を単純化する。等分散性の重大な違反(実際は不等分散であるデータの分布を等分散と仮定する)は、ピアソン係数によって計測される適合度の過大評価をもたらす。 (ja)
- 統計学において、確率変数の列あるいはベクトルを構成する全ての確率変数が, 等しい有限分散を持つとき, それらは等分散(とうぶんさん)である。英語では homoscedasticity あるいは homogeneity of variance と呼ばれる。逆は (Heteroscedasticity) あるいは分散不均一性である。 等分散性の仮定は、数学的あるいは計算機的処理を単純化する。等分散性の重大な違反(実際は不等分散であるデータの分布を等分散と仮定する)は、ピアソン係数によって計測される適合度の過大評価をもたらす。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |