Property |
Value |
dbo:abstract
|
- 計算理論(けいさんりろん、theory of computation)は、理論計算機科学と数学の一部で、計算模型やアルゴリズムを理論的にあつかう学問である。計算複雑性理論、計算可能性理論を含む。ここでいう計算 (computation) とは、数学的に表現できる、あらゆる種類の情報処理のこと。 計算を厳密に研究するため、計算機科学では計算模型と呼ばれるコンピュータの数学的抽象化を行う。その手法はいくつかあるが、最も有名なものはチューリングマシンである。チューリングマシンは、言ってみれば無限のメモリを持つコンピュータであるが、一度にアクセスできるメモリ範囲は非常に限られている。チューリングマシンは十分な計算能力を持つモデルでありながら、単純で定式化しやすく、様々な証明に使い易いため、計算機科学者がよく利用する。無限のメモリというのは非現実的な特徴と思われるかもしれないが、より適切な表現を使うならば「無制限」のメモリであって、読み書きしようとした時にそれができればよく、それに対応する「無限な実体」とでも言うべきものが必要なわけではない。「チューリングマシンで、ある問題が解ける」とは必ず有限のステップで計算が終了することを意味し、よってそれに必要なメモリの量は有限である。よって、チューリングマシンで解くことが出来る問題は、現実のコンピュータであっても必要なだけのメモリがあれば解くことが出来る。 (ja)
- 計算理論(けいさんりろん、theory of computation)は、理論計算機科学と数学の一部で、計算模型やアルゴリズムを理論的にあつかう学問である。計算複雑性理論、計算可能性理論を含む。ここでいう計算 (computation) とは、数学的に表現できる、あらゆる種類の情報処理のこと。 計算を厳密に研究するため、計算機科学では計算模型と呼ばれるコンピュータの数学的抽象化を行う。その手法はいくつかあるが、最も有名なものはチューリングマシンである。チューリングマシンは、言ってみれば無限のメモリを持つコンピュータであるが、一度にアクセスできるメモリ範囲は非常に限られている。チューリングマシンは十分な計算能力を持つモデルでありながら、単純で定式化しやすく、様々な証明に使い易いため、計算機科学者がよく利用する。無限のメモリというのは非現実的な特徴と思われるかもしれないが、より適切な表現を使うならば「無制限」のメモリであって、読み書きしようとした時にそれができればよく、それに対応する「無限な実体」とでも言うべきものが必要なわけではない。「チューリングマシンで、ある問題が解ける」とは必ず有限のステップで計算が終了することを意味し、よってそれに必要なメモリの量は有限である。よって、チューリングマシンで解くことが出来る問題は、現実のコンピュータであっても必要なだけのメモリがあれば解くことが出来る。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3981 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 計算理論(けいさんりろん、theory of computation)は、理論計算機科学と数学の一部で、計算模型やアルゴリズムを理論的にあつかう学問である。計算複雑性理論、計算可能性理論を含む。ここでいう計算 (computation) とは、数学的に表現できる、あらゆる種類の情報処理のこと。 計算を厳密に研究するため、計算機科学では計算模型と呼ばれるコンピュータの数学的抽象化を行う。その手法はいくつかあるが、最も有名なものはチューリングマシンである。チューリングマシンは、言ってみれば無限のメモリを持つコンピュータであるが、一度にアクセスできるメモリ範囲は非常に限られている。チューリングマシンは十分な計算能力を持つモデルでありながら、単純で定式化しやすく、様々な証明に使い易いため、計算機科学者がよく利用する。無限のメモリというのは非現実的な特徴と思われるかもしれないが、より適切な表現を使うならば「無制限」のメモリであって、読み書きしようとした時にそれができればよく、それに対応する「無限な実体」とでも言うべきものが必要なわけではない。「チューリングマシンで、ある問題が解ける」とは必ず有限のステップで計算が終了することを意味し、よってそれに必要なメモリの量は有限である。よって、チューリングマシンで解くことが出来る問題は、現実のコンピュータであっても必要なだけのメモリがあれば解くことが出来る。 (ja)
- 計算理論(けいさんりろん、theory of computation)は、理論計算機科学と数学の一部で、計算模型やアルゴリズムを理論的にあつかう学問である。計算複雑性理論、計算可能性理論を含む。ここでいう計算 (computation) とは、数学的に表現できる、あらゆる種類の情報処理のこと。 計算を厳密に研究するため、計算機科学では計算模型と呼ばれるコンピュータの数学的抽象化を行う。その手法はいくつかあるが、最も有名なものはチューリングマシンである。チューリングマシンは、言ってみれば無限のメモリを持つコンピュータであるが、一度にアクセスできるメモリ範囲は非常に限られている。チューリングマシンは十分な計算能力を持つモデルでありながら、単純で定式化しやすく、様々な証明に使い易いため、計算機科学者がよく利用する。無限のメモリというのは非現実的な特徴と思われるかもしれないが、より適切な表現を使うならば「無制限」のメモリであって、読み書きしようとした時にそれができればよく、それに対応する「無限な実体」とでも言うべきものが必要なわけではない。「チューリングマシンで、ある問題が解ける」とは必ず有限のステップで計算が終了することを意味し、よってそれに必要なメモリの量は有限である。よって、チューリングマシンで解くことが出来る問題は、現実のコンピュータであっても必要なだけのメモリがあれば解くことが出来る。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |