Property |
Value |
dbo:abstract
|
- 数学の函数解析学の分野における有界級数(ゆうかいきゅうすう、英: bounded series)の空間 bs は、その部分和(series; 有限級数)の列が有界 (bounded) となるような実または複素無限数列全体の成す数列空間として で与えられる。この空間 bs は項ごとの和とスカラー倍に関してベクトル空間を成し、ノルム ‖ • ‖bs を与えてノルム空間の構造を持つ。さらに bs はこのノルムの誘導する距離に関して完備、従ってバナッハ空間となる。 bs の部分空間として、収斂級数 (convergent series) の空間 csは、その和(無限級数)が収斂(でもよい)する無限数列全体の成す数列空間 を言う。cs は、バナッハ空間 bs の(ノルム ‖ • ‖bs に関する)閉部分空間となるから、それ自身バナッハ空間を成す。 空間 bs は有界数列の空間 ℓ∞ に、写像 を通じて等距同型であり、さらに同じ写像 T によって cs は収斂数列の空間 c に等距同型となる。 (ja)
- 数学の函数解析学の分野における有界級数(ゆうかいきゅうすう、英: bounded series)の空間 bs は、その部分和(series; 有限級数)の列が有界 (bounded) となるような実または複素無限数列全体の成す数列空間として で与えられる。この空間 bs は項ごとの和とスカラー倍に関してベクトル空間を成し、ノルム ‖ • ‖bs を与えてノルム空間の構造を持つ。さらに bs はこのノルムの誘導する距離に関して完備、従ってバナッハ空間となる。 bs の部分空間として、収斂級数 (convergent series) の空間 csは、その和(無限級数)が収斂(でもよい)する無限数列全体の成す数列空間 を言う。cs は、バナッハ空間 bs の(ノルム ‖ • ‖bs に関する)閉部分空間となるから、それ自身バナッハ空間を成す。 空間 bs は有界数列の空間 ℓ∞ に、写像 を通じて等距同型であり、さらに同じ写像 T によって cs は収斂数列の空間 c に等距同型となる。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1647 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 数学の函数解析学の分野における有界級数(ゆうかいきゅうすう、英: bounded series)の空間 bs は、その部分和(series; 有限級数)の列が有界 (bounded) となるような実または複素無限数列全体の成す数列空間として で与えられる。この空間 bs は項ごとの和とスカラー倍に関してベクトル空間を成し、ノルム ‖ • ‖bs を与えてノルム空間の構造を持つ。さらに bs はこのノルムの誘導する距離に関して完備、従ってバナッハ空間となる。 bs の部分空間として、収斂級数 (convergent series) の空間 csは、その和(無限級数)が収斂(でもよい)する無限数列全体の成す数列空間 を言う。cs は、バナッハ空間 bs の(ノルム ‖ • ‖bs に関する)閉部分空間となるから、それ自身バナッハ空間を成す。 空間 bs は有界数列の空間 ℓ∞ に、写像 を通じて等距同型であり、さらに同じ写像 T によって cs は収斂数列の空間 c に等距同型となる。 (ja)
- 数学の函数解析学の分野における有界級数(ゆうかいきゅうすう、英: bounded series)の空間 bs は、その部分和(series; 有限級数)の列が有界 (bounded) となるような実または複素無限数列全体の成す数列空間として で与えられる。この空間 bs は項ごとの和とスカラー倍に関してベクトル空間を成し、ノルム ‖ • ‖bs を与えてノルム空間の構造を持つ。さらに bs はこのノルムの誘導する距離に関して完備、従ってバナッハ空間となる。 bs の部分空間として、収斂級数 (convergent series) の空間 csは、その和(無限級数)が収斂(でもよい)する無限数列全体の成す数列空間 を言う。cs は、バナッハ空間 bs の(ノルム ‖ • ‖bs に関する)閉部分空間となるから、それ自身バナッハ空間を成す。 空間 bs は有界数列の空間 ℓ∞ に、写像 を通じて等距同型であり、さらに同じ写像 T によって cs は収斂数列の空間 c に等距同型となる。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |