| Property |
Value |
| dbo:abstract
|
- 数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。 (ja)
- 数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。 (ja)
|
| dbo:thumbnail
| |
| dbo:wikiPageExternalLink
| |
| dbo:wikiPageID
| |
| dbo:wikiPageLength
|
- 3337 (xsd:nonNegativeInteger)
|
| dbo:wikiPageRevisionID
| |
| dbo:wikiPageWikiLink
| |
| prop-en:wikiPageUsesTemplate
| |
| dct:subject
| |
| rdfs:comment
|
- 数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。 (ja)
- 数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。 (ja)
|
| rdfs:label
|
- 双曲3次元多様体 (ja)
- 双曲3次元多様体 (ja)
|
| owl:sameAs
| |
| prov:wasDerivedFrom
| |
| foaf:depiction
| |
| foaf:isPrimaryTopicOf
| |
| is dbo:wikiPageWikiLink
of | |
| is owl:sameAs
of | |
| is foaf:primaryTopic
of | |