ベレの方法(ベレのほうほう、英: Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の質量を M、座標を R、力を F とすると、運動方程式は である。加速度 d2R/dt2 を中心差分で近似すると、時間刻み幅を Δt として となる。以上から得られた によって原子の位置を更新する。ただし I は原子のインデックスである。 この手法にはいくつかの変形版、発展形がある。分子動力学法以外に、カー・パリネロ法などでも使用されることがある。

Property Value
dbo:abstract
  • ベレの方法(ベレのほうほう、英: Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の質量を M、座標を R、力を F とすると、運動方程式は である。加速度 d2R/dt2 を中心差分で近似すると、時間刻み幅を Δt として となる。以上から得られた によって原子の位置を更新する。ただし I は原子のインデックスである。 この手法にはいくつかの変形版、発展形がある。分子動力学法以外に、カー・パリネロ法などでも使用されることがある。 (ja)
  • ベレの方法(ベレのほうほう、英: Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の質量を M、座標を R、力を F とすると、運動方程式は である。加速度 d2R/dt2 を中心差分で近似すると、時間刻み幅を Δt として となる。以上から得られた によって原子の位置を更新する。ただし I は原子のインデックスである。 この手法にはいくつかの変形版、発展形がある。分子動力学法以外に、カー・パリネロ法などでも使用されることがある。 (ja)
dbo:wikiPageID
  • 10941 (xsd:integer)
dbo:wikiPageLength
  • 1178 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 83778783 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ベレの方法(ベレのほうほう、英: Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の質量を M、座標を R、力を F とすると、運動方程式は である。加速度 d2R/dt2 を中心差分で近似すると、時間刻み幅を Δt として となる。以上から得られた によって原子の位置を更新する。ただし I は原子のインデックスである。 この手法にはいくつかの変形版、発展形がある。分子動力学法以外に、カー・パリネロ法などでも使用されることがある。 (ja)
  • ベレの方法(ベレのほうほう、英: Verlet algorithm)は、分子動力学法などにおいて、原子間(粒子間)に働く力をもとに原子(粒子)を逐次的に動かす方法の一つ。ベレのアルゴリズム、ベレ法、ベルレの方法などとも言う。 原子(粒子)の質量を M、座標を R、力を F とすると、運動方程式は である。加速度 d2R/dt2 を中心差分で近似すると、時間刻み幅を Δt として となる。以上から得られた によって原子の位置を更新する。ただし I は原子のインデックスである。 この手法にはいくつかの変形版、発展形がある。分子動力学法以外に、カー・パリネロ法などでも使用されることがある。 (ja)
rdfs:label
  • ベレの方法 (ja)
  • ベレの方法 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of