ジャイロベクトル空間(ジャイロベクトルくうかん、英: gyrovector space)はAbraham A. Ungarによって提案された数学的構造である。ユークリッド幾何学の研究にベクトル空間が用いられるのと同様に、ジャイロベクトル空間は双曲幾何学の研究に用いられる。Ungarは、通常のベクトルが加算に関して群を成す代わりに、加算に関してジャイロ群を成すものとしてジャイロベクトルを定式化した。Ungarは、特殊相対性理論における速度の合成を表すためのローレンツブーストに代わる手法としてジャイロベクトル空間を開発した。これは「ジャイロオペレータ」を導入することで達成されている。ジャイロオペレータは2つの3次元ベクトルから作られ、3次元ベクトルに対する作用素となる。