Property |
Value |
dbo:abstract
|
- 情報理論において、シャノンの通信路符号化定理(シャノンのつうしんろふごうかていり、英語: noisy-channel coding theorem)とは、通信路の雑音のレベルがどのように与えられたとしても、その通信路を介して計算上の最大値までほぼエラーのない離散データ(デジタル情報)を送信することが可能であるという定理である。この定理は、1948年にクロード・シャノンによって発表されたが、これはハリー・ナイキストとラルフ・ハートレーの初期の仕事とアイデアに一部基づいていた。シャノンの第一基本定理(情報源符号化定理)に対してシャノンの第二基本定理とも言い、単にシャノンの定理とも言う。 上記の「計算上の最大値」を通信路容量(またはシャノン限界、シャノン容量とも)といい、特定の雑音レベルについて、通信路の理論上の最大情報転送速度である。 (ja)
- 情報理論において、シャノンの通信路符号化定理(シャノンのつうしんろふごうかていり、英語: noisy-channel coding theorem)とは、通信路の雑音のレベルがどのように与えられたとしても、その通信路を介して計算上の最大値までほぼエラーのない離散データ(デジタル情報)を送信することが可能であるという定理である。この定理は、1948年にクロード・シャノンによって発表されたが、これはハリー・ナイキストとラルフ・ハートレーの初期の仕事とアイデアに一部基づいていた。シャノンの第一基本定理(情報源符号化定理)に対してシャノンの第二基本定理とも言い、単にシャノンの定理とも言う。 上記の「計算上の最大値」を通信路容量(またはシャノン限界、シャノン容量とも)といい、特定の雑音レベルについて、通信路の理論上の最大情報転送速度である。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9403 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 情報理論において、シャノンの通信路符号化定理(シャノンのつうしんろふごうかていり、英語: noisy-channel coding theorem)とは、通信路の雑音のレベルがどのように与えられたとしても、その通信路を介して計算上の最大値までほぼエラーのない離散データ(デジタル情報)を送信することが可能であるという定理である。この定理は、1948年にクロード・シャノンによって発表されたが、これはハリー・ナイキストとラルフ・ハートレーの初期の仕事とアイデアに一部基づいていた。シャノンの第一基本定理(情報源符号化定理)に対してシャノンの第二基本定理とも言い、単にシャノンの定理とも言う。 上記の「計算上の最大値」を通信路容量(またはシャノン限界、シャノン容量とも)といい、特定の雑音レベルについて、通信路の理論上の最大情報転送速度である。 (ja)
- 情報理論において、シャノンの通信路符号化定理(シャノンのつうしんろふごうかていり、英語: noisy-channel coding theorem)とは、通信路の雑音のレベルがどのように与えられたとしても、その通信路を介して計算上の最大値までほぼエラーのない離散データ(デジタル情報)を送信することが可能であるという定理である。この定理は、1948年にクロード・シャノンによって発表されたが、これはハリー・ナイキストとラルフ・ハートレーの初期の仕事とアイデアに一部基づいていた。シャノンの第一基本定理(情報源符号化定理)に対してシャノンの第二基本定理とも言い、単にシャノンの定理とも言う。 上記の「計算上の最大値」を通信路容量(またはシャノン限界、シャノン容量とも)といい、特定の雑音レベルについて、通信路の理論上の最大情報転送速度である。 (ja)
|
rdfs:label
|
- シャノンの通信路符号化定理 (ja)
- シャノンの通信路符号化定理 (ja)
|
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is prop-en:knownFor
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |