Property |
Value |
dbo:abstract
|
- Particle-in-Cell (PIC、セル内粒子) 法とは、特定の問題における偏微分方程式を解く方法の1つである。この方法では、個々の粒子 (または流体要素) が連続な相空間で追跡される。一方で、密度や電流といった分布の積率や電磁場が計算格子上で計算される。粒子の追跡はラグランジュ描像で、積率と電磁場の計算はオイラー描像で記述される。 PIC法は1955年には既に使用されていた。これは最初のFortranコンパイラが利用可能になるよりも昔の事である。当時の方法は、、、Hockney、Birdsall、Morseらにより、1950年代後半から1960年代初頭にかけてプラズマシミュレーションで人気を博した。プラズマシミュレーションにおけるPIC法では、固定格子上で計算されたセルフコンシステントな電磁場 (または静電場) 内の荷電粒子の軌道を追跡する。 (ja)
- Particle-in-Cell (PIC、セル内粒子) 法とは、特定の問題における偏微分方程式を解く方法の1つである。この方法では、個々の粒子 (または流体要素) が連続な相空間で追跡される。一方で、密度や電流といった分布の積率や電磁場が計算格子上で計算される。粒子の追跡はラグランジュ描像で、積率と電磁場の計算はオイラー描像で記述される。 PIC法は1955年には既に使用されていた。これは最初のFortranコンパイラが利用可能になるよりも昔の事である。当時の方法は、、、Hockney、Birdsall、Morseらにより、1950年代後半から1960年代初頭にかけてプラズマシミュレーションで人気を博した。プラズマシミュレーションにおけるPIC法では、固定格子上で計算されたセルフコンシステントな電磁場 (または静電場) 内の荷電粒子の軌道を追跡する。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 17518 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Particle-in-Cell (PIC、セル内粒子) 法とは、特定の問題における偏微分方程式を解く方法の1つである。この方法では、個々の粒子 (または流体要素) が連続な相空間で追跡される。一方で、密度や電流といった分布の積率や電磁場が計算格子上で計算される。粒子の追跡はラグランジュ描像で、積率と電磁場の計算はオイラー描像で記述される。 PIC法は1955年には既に使用されていた。これは最初のFortranコンパイラが利用可能になるよりも昔の事である。当時の方法は、、、Hockney、Birdsall、Morseらにより、1950年代後半から1960年代初頭にかけてプラズマシミュレーションで人気を博した。プラズマシミュレーションにおけるPIC法では、固定格子上で計算されたセルフコンシステントな電磁場 (または静電場) 内の荷電粒子の軌道を追跡する。 (ja)
- Particle-in-Cell (PIC、セル内粒子) 法とは、特定の問題における偏微分方程式を解く方法の1つである。この方法では、個々の粒子 (または流体要素) が連続な相空間で追跡される。一方で、密度や電流といった分布の積率や電磁場が計算格子上で計算される。粒子の追跡はラグランジュ描像で、積率と電磁場の計算はオイラー描像で記述される。 PIC法は1955年には既に使用されていた。これは最初のFortranコンパイラが利用可能になるよりも昔の事である。当時の方法は、、、Hockney、Birdsall、Morseらにより、1950年代後半から1960年代初頭にかけてプラズマシミュレーションで人気を博した。プラズマシミュレーションにおけるPIC法では、固定格子上で計算されたセルフコンシステントな電磁場 (または静電場) 内の荷電粒子の軌道を追跡する。 (ja)
|
rdfs:label
|
- Particle-in-Cell法 (ja)
- Particle-in-Cell法 (ja)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |