Property |
Value |
dbo:abstract
|
- 運動の積分 (うんどうのせきぶん, integral of motion) とは、古典力学において、系の時間発展に際して時間変化しない物理量のこと。保存量 (conserved quantity) や恒量、運動の定数 (constant of motion)、第一積分 (first integral) あるいは単に積分とも呼ばれる。一般に力学の問題が与えられたとき、系の自由度の数に等しい数の第一積分を見出すことができれば、その問題を「解く(求積する)」ことができる(リウヴィルの定理)ため、その存在あるいは具体的な表示を調べることは力学(特に可積分系)の研究において基本的である。 (ja)
- 運動の積分 (うんどうのせきぶん, integral of motion) とは、古典力学において、系の時間発展に際して時間変化しない物理量のこと。保存量 (conserved quantity) や恒量、運動の定数 (constant of motion)、第一積分 (first integral) あるいは単に積分とも呼ばれる。一般に力学の問題が与えられたとき、系の自由度の数に等しい数の第一積分を見出すことができれば、その問題を「解く(求積する)」ことができる(リウヴィルの定理)ため、その存在あるいは具体的な表示を調べることは力学(特に可積分系)の研究において基本的である。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4783 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 運動の積分 (うんどうのせきぶん, integral of motion) とは、古典力学において、系の時間発展に際して時間変化しない物理量のこと。保存量 (conserved quantity) や恒量、運動の定数 (constant of motion)、第一積分 (first integral) あるいは単に積分とも呼ばれる。一般に力学の問題が与えられたとき、系の自由度の数に等しい数の第一積分を見出すことができれば、その問題を「解く(求積する)」ことができる(リウヴィルの定理)ため、その存在あるいは具体的な表示を調べることは力学(特に可積分系)の研究において基本的である。 (ja)
- 運動の積分 (うんどうのせきぶん, integral of motion) とは、古典力学において、系の時間発展に際して時間変化しない物理量のこと。保存量 (conserved quantity) や恒量、運動の定数 (constant of motion)、第一積分 (first integral) あるいは単に積分とも呼ばれる。一般に力学の問題が与えられたとき、系の自由度の数に等しい数の第一積分を見出すことができれば、その問題を「解く(求積する)」ことができる(リウヴィルの定理)ため、その存在あるいは具体的な表示を調べることは力学(特に可積分系)の研究において基本的である。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |