環電流(かんでんりゅう、英: ring current)は、ベンゼンやナフタレンといった芳香族分子において観察される効果である。磁場が芳香族系の平面に対して垂直に位置している時、芳香環の非局在π電子に環電流が誘起される。これはアンペールの法則の直接の結果である。ほとんどの非芳香族分子中の電子は特定の結合に局在するが、非局在π電子は自由に巡回するため、磁場に対してより強く応答する。 芳香族環電流はNMR分光法と関連している。環電流は有機あるいは無機芳香族分子中の13Cおよび1H核の化学シフトに劇的に影響する。この効果によって、これらの原子核の置かれている状態を区別することができ、ゆえに分子構造決定において非常に有用である。ベンゼンでは、芳香環のプロトンの位置では環電流による誘導磁場が外部磁場と同じ方向を向くため反遮蔽を受け、化学シフトは7.3 ppmを示す(シクロヘキセン中のビニルプロトンの化学シフトは5.6 ppmである)。一方、芳香環の内部に存在するプロトンは誘導磁場と外部磁場が逆方向を向くため遮蔽を受ける。この効果はシクロオクタデカノナエン([18]アヌレン)で観測することができ、内部に位置する6つのプロトンの化学シフトは−3 ppmである。 同様の効果は三次元のフラーレンでも観測される。この場合は球電流(sphere current)と呼ばれる。

Property Value
dbo:abstract
  • 環電流(かんでんりゅう、英: ring current)は、ベンゼンやナフタレンといった芳香族分子において観察される効果である。磁場が芳香族系の平面に対して垂直に位置している時、芳香環の非局在π電子に環電流が誘起される。これはアンペールの法則の直接の結果である。ほとんどの非芳香族分子中の電子は特定の結合に局在するが、非局在π電子は自由に巡回するため、磁場に対してより強く応答する。 芳香族環電流はNMR分光法と関連している。環電流は有機あるいは無機芳香族分子中の13Cおよび1H核の化学シフトに劇的に影響する。この効果によって、これらの原子核の置かれている状態を区別することができ、ゆえに分子構造決定において非常に有用である。ベンゼンでは、芳香環のプロトンの位置では環電流による誘導磁場が外部磁場と同じ方向を向くため反遮蔽を受け、化学シフトは7.3 ppmを示す(シクロヘキセン中のビニルプロトンの化学シフトは5.6 ppmである)。一方、芳香環の内部に存在するプロトンは誘導磁場と外部磁場が逆方向を向くため遮蔽を受ける。この効果はシクロオクタデカノナエン([18]アヌレン)で観測することができ、内部に位置する6つのプロトンの化学シフトは−3 ppmである。 反芳香族性化合物では状況は逆転する。[18]アヌレンのジアニオンでは、内部プロトンは強力な反遮蔽効果を受け化学シフトは20.8 ppmおよび29.5 ppmを示す一方、外部プロトンは(相対的に)顕著に遮蔽され、化学シフトは−1.1 ppmを示す。このように、反磁性環電流あるいはジアトロピック (diatropic) 環電流は芳香族性と関連しており、パラトロピック (paratropic) 環電流は反芳香族性を示す。 同様の効果は三次元のフラーレンでも観測される。この場合は球電流(sphere current)と呼ばれる。 (ja)
  • 環電流(かんでんりゅう、英: ring current)は、ベンゼンやナフタレンといった芳香族分子において観察される効果である。磁場が芳香族系の平面に対して垂直に位置している時、芳香環の非局在π電子に環電流が誘起される。これはアンペールの法則の直接の結果である。ほとんどの非芳香族分子中の電子は特定の結合に局在するが、非局在π電子は自由に巡回するため、磁場に対してより強く応答する。 芳香族環電流はNMR分光法と関連している。環電流は有機あるいは無機芳香族分子中の13Cおよび1H核の化学シフトに劇的に影響する。この効果によって、これらの原子核の置かれている状態を区別することができ、ゆえに分子構造決定において非常に有用である。ベンゼンでは、芳香環のプロトンの位置では環電流による誘導磁場が外部磁場と同じ方向を向くため反遮蔽を受け、化学シフトは7.3 ppmを示す(シクロヘキセン中のビニルプロトンの化学シフトは5.6 ppmである)。一方、芳香環の内部に存在するプロトンは誘導磁場と外部磁場が逆方向を向くため遮蔽を受ける。この効果はシクロオクタデカノナエン([18]アヌレン)で観測することができ、内部に位置する6つのプロトンの化学シフトは−3 ppmである。 反芳香族性化合物では状況は逆転する。[18]アヌレンのジアニオンでは、内部プロトンは強力な反遮蔽効果を受け化学シフトは20.8 ppmおよび29.5 ppmを示す一方、外部プロトンは(相対的に)顕著に遮蔽され、化学シフトは−1.1 ppmを示す。このように、反磁性環電流あるいはジアトロピック (diatropic) 環電流は芳香族性と関連しており、パラトロピック (paratropic) 環電流は反芳香族性を示す。 同様の効果は三次元のフラーレンでも観測される。この場合は球電流(sphere current)と呼ばれる。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 135484 (xsd:integer)
dbo:wikiPageLength
  • 4719 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 81428591 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 環電流(かんでんりゅう、英: ring current)は、ベンゼンやナフタレンといった芳香族分子において観察される効果である。磁場が芳香族系の平面に対して垂直に位置している時、芳香環の非局在π電子に環電流が誘起される。これはアンペールの法則の直接の結果である。ほとんどの非芳香族分子中の電子は特定の結合に局在するが、非局在π電子は自由に巡回するため、磁場に対してより強く応答する。 芳香族環電流はNMR分光法と関連している。環電流は有機あるいは無機芳香族分子中の13Cおよび1H核の化学シフトに劇的に影響する。この効果によって、これらの原子核の置かれている状態を区別することができ、ゆえに分子構造決定において非常に有用である。ベンゼンでは、芳香環のプロトンの位置では環電流による誘導磁場が外部磁場と同じ方向を向くため反遮蔽を受け、化学シフトは7.3 ppmを示す(シクロヘキセン中のビニルプロトンの化学シフトは5.6 ppmである)。一方、芳香環の内部に存在するプロトンは誘導磁場と外部磁場が逆方向を向くため遮蔽を受ける。この効果はシクロオクタデカノナエン([18]アヌレン)で観測することができ、内部に位置する6つのプロトンの化学シフトは−3 ppmである。 同様の効果は三次元のフラーレンでも観測される。この場合は球電流(sphere current)と呼ばれる。 (ja)
  • 環電流(かんでんりゅう、英: ring current)は、ベンゼンやナフタレンといった芳香族分子において観察される効果である。磁場が芳香族系の平面に対して垂直に位置している時、芳香環の非局在π電子に環電流が誘起される。これはアンペールの法則の直接の結果である。ほとんどの非芳香族分子中の電子は特定の結合に局在するが、非局在π電子は自由に巡回するため、磁場に対してより強く応答する。 芳香族環電流はNMR分光法と関連している。環電流は有機あるいは無機芳香族分子中の13Cおよび1H核の化学シフトに劇的に影響する。この効果によって、これらの原子核の置かれている状態を区別することができ、ゆえに分子構造決定において非常に有用である。ベンゼンでは、芳香環のプロトンの位置では環電流による誘導磁場が外部磁場と同じ方向を向くため反遮蔽を受け、化学シフトは7.3 ppmを示す(シクロヘキセン中のビニルプロトンの化学シフトは5.6 ppmである)。一方、芳香環の内部に存在するプロトンは誘導磁場と外部磁場が逆方向を向くため遮蔽を受ける。この効果はシクロオクタデカノナエン([18]アヌレン)で観測することができ、内部に位置する6つのプロトンの化学シフトは−3 ppmである。 同様の効果は三次元のフラーレンでも観測される。この場合は球電流(sphere current)と呼ばれる。 (ja)
rdfs:label
  • 環電流 (ja)
  • 環電流 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of