数学において、数列や点列の極限(英: limit of a sequence)は数列や点列の項が「近づく」値である。そのような極限が存在すれば、その列は収束する (convergent) と言われる。収束しない列は発散する (divergent) と言われる。点列の極限は解析学のすべての基本である。 極限は任意の距離空間や位相空間で定義できるが、普通まず実数の場合に出会う。

Property Value
dbo:abstract
  • 数学において、数列や点列の極限(英: limit of a sequence)は数列や点列の項が「近づく」値である。そのような極限が存在すれば、その列は収束する (convergent) と言われる。収束しない列は発散する (divergent) と言われる。点列の極限は解析学のすべての基本である。 極限は任意の距離空間や位相空間で定義できるが、普通まず実数の場合に出会う。 (ja)
  • 数学において、数列や点列の極限(英: limit of a sequence)は数列や点列の項が「近づく」値である。そのような極限が存在すれば、その列は収束する (convergent) と言われる。収束しない列は発散する (divergent) と言われる。点列の極限は解析学のすべての基本である。 極限は任意の距離空間や位相空間で定義できるが、普通まず実数の場合に出会う。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3046797 (xsd:integer)
dbo:wikiPageLength
  • 10367 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86000361 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Limit (ja)
  • Limit (ja)
prop-ja:urlname
  • Limit (ja)
  • Limit (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、数列や点列の極限(英: limit of a sequence)は数列や点列の項が「近づく」値である。そのような極限が存在すれば、その列は収束する (convergent) と言われる。収束しない列は発散する (divergent) と言われる。点列の極限は解析学のすべての基本である。 極限は任意の距離空間や位相空間で定義できるが、普通まず実数の場合に出会う。 (ja)
  • 数学において、数列や点列の極限(英: limit of a sequence)は数列や点列の項が「近づく」値である。そのような極限が存在すれば、その列は収束する (convergent) と言われる。収束しない列は発散する (divergent) と言われる。点列の極限は解析学のすべての基本である。 極限は任意の距離空間や位相空間で定義できるが、普通まず実数の場合に出会う。 (ja)
rdfs:label
  • 数列の極限 (ja)
  • 数列の極限 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of