Property |
Value |
dbo:abstract
|
- 微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。 (ja)
- 微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6846 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:author
|
- Kudryavtsev, L.D. (ja)
- Kudryavtsev, L.D. (ja)
|
prop-en:title
|
- Finite-increments formula (ja)
- Gauss's Mean-Value Theorem (ja)
- Mean Value Theorem (ja)
- Mean-Value Theorem (ja)
- The Mean Value Theorem (ja)
- complex mean-value theorem (ja)
- 平均値の定理とその応用例題2パターン (ja)
- mean-value theorem (ja)
- ロルの定理,平均値の定理とその証明 (ja)
- Finite-increments formula (ja)
- Gauss's Mean-Value Theorem (ja)
- Mean Value Theorem (ja)
- Mean-Value Theorem (ja)
- The Mean Value Theorem (ja)
- complex mean-value theorem (ja)
- 平均値の定理とその応用例題2パターン (ja)
- mean-value theorem (ja)
- ロルの定理,平均値の定理とその証明 (ja)
|
prop-en:urlname
|
- ComplexMeanValueTheorem (ja)
- Finite-increments_formula (ja)
- GausssMean-ValueTheorem (ja)
- Mean-ValueTheorem (ja)
- MeanValueTheorem (ja)
- Mean_Value_Theorem (ja)
- mean+value+theorem (ja)
- meanvalue (ja)
- rolle (ja)
- ComplexMeanValueTheorem (ja)
- Finite-increments_formula (ja)
- GausssMean-ValueTheorem (ja)
- Mean-ValueTheorem (ja)
- MeanValueTheorem (ja)
- Mean_Value_Theorem (ja)
- mean+value+theorem (ja)
- meanvalue (ja)
- rolle (ja)
|
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。 (ja)
- 微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が領域内に存在することを主張する。平均値の定理にはいくつかバリエーションがあるが、単に 「平均値の定理」 と言った場合は、ラグランジュの平均値の定理と呼ばれる微分に関する平均値の定理のことを指す場合が多い。 平均値の定理は微積分学の他の定理の証明(例えば、テイラーの定理、微分積分学の基本定理)にしばしば利用される、大変有用なものである。平均値の定理の証明自体にはロルの定理を用いる。その一方で、平均値の定理はそのまま多変数の関数に適用することはできない。また、もっと弱い条件の元でも同じ定理が成り立つ。その他種々の理由から、平均値の定理を使うこと避ける数学者もいる。多変数関数にも使えて、平均値の定理の代わりになるような定理として、有限増分不等式がある。これは存在型ではない。あるいは、積分を持ち込んで微積分学の基本定理で代用することもある。 (ja)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |