Property |
Value |
dbo:abstract
|
- 勾配ブースティング(こうばいブースティング、Gradient Boosting)は、回帰や分類などのタスクのための機械学習手法であり、弱い予測モデル weak prediction model(通常は決定木)のアンサンブルの形で予測モデルを生成する。決定木が弱い学習者 weak learner である場合、結果として得られるアルゴリズムは勾配ブースト木と呼ばれ、通常はランダムフォレストよりも優れている。他のブースティング手法と同様に段階的にモデルを構築するが、任意の微分可能な損失関数の最適化を可能にすることで一般化している。 (ja)
- 勾配ブースティング(こうばいブースティング、Gradient Boosting)は、回帰や分類などのタスクのための機械学習手法であり、弱い予測モデル weak prediction model(通常は決定木)のアンサンブルの形で予測モデルを生成する。決定木が弱い学習者 weak learner である場合、結果として得られるアルゴリズムは勾配ブースト木と呼ばれ、通常はランダムフォレストよりも優れている。他のブースティング手法と同様に段階的にモデルを構築するが、任意の微分可能な損失関数の最適化を可能にすることで一般化している。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 17923 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 勾配ブースティング(こうばいブースティング、Gradient Boosting)は、回帰や分類などのタスクのための機械学習手法であり、弱い予測モデル weak prediction model(通常は決定木)のアンサンブルの形で予測モデルを生成する。決定木が弱い学習者 weak learner である場合、結果として得られるアルゴリズムは勾配ブースト木と呼ばれ、通常はランダムフォレストよりも優れている。他のブースティング手法と同様に段階的にモデルを構築するが、任意の微分可能な損失関数の最適化を可能にすることで一般化している。 (ja)
- 勾配ブースティング(こうばいブースティング、Gradient Boosting)は、回帰や分類などのタスクのための機械学習手法であり、弱い予測モデル weak prediction model(通常は決定木)のアンサンブルの形で予測モデルを生成する。決定木が弱い学習者 weak learner である場合、結果として得られるアルゴリズムは勾配ブースト木と呼ばれ、通常はランダムフォレストよりも優れている。他のブースティング手法と同様に段階的にモデルを構築するが、任意の微分可能な損失関数の最適化を可能にすることで一般化している。 (ja)
|
rdfs:label
|
- 勾配ブースティング (ja)
- 勾配ブースティング (ja)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |