数学における分配多元環(ぶんぱいたげんかん、英: distributive algebra)または非結合多元環(ひけつごうたげんかん、英: non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix = x = xI がその多元環のどんな x についても成立するような元 I)が存在するときに言う。

Property Value
dbo:abstract
  • 数学における分配多元環(ぶんぱいたげんかん、英: distributive algebra)または非結合多元環(ひけつごうたげんかん、英: non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 を引き起こす(La および Ra をそれぞれ a による左移動および右移動作用と呼ぶ)。分配多元環 A の包絡環 (enveloping algebra) とは、A の自己準同型環の部分環で、A の左移動および右移動によって生成されるものを言う。この包絡環は、A が結合的でない場合でも、必ず結合的になる。この意味で、包絡環は「A を含む最小の結合多元環」である。 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix = x = xI がその多元環のどんな x についても成立するような元 I)が存在するときに言う。 (ja)
  • 数学における分配多元環(ぶんぱいたげんかん、英: distributive algebra)または非結合多元環(ひけつごうたげんかん、英: non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 を引き起こす(La および Ra をそれぞれ a による左移動および右移動作用と呼ぶ)。分配多元環 A の包絡環 (enveloping algebra) とは、A の自己準同型環の部分環で、A の左移動および右移動によって生成されるものを言う。この包絡環は、A が結合的でない場合でも、必ず結合的になる。この意味で、包絡環は「A を含む最小の結合多元環」である。 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix = x = xI がその多元環のどんな x についても成立するような元 I)が存在するときに言う。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2627840 (xsd:integer)
dbo:wikiPageLength
  • 4734 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 82534747 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における分配多元環(ぶんぱいたげんかん、英: distributive algebra)または非結合多元環(ひけつごうたげんかん、英: non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix = x = xI がその多元環のどんな x についても成立するような元 I)が存在するときに言う。 (ja)
  • 数学における分配多元環(ぶんぱいたげんかん、英: distributive algebra)または非結合多元環(ひけつごうたげんかん、英: non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix = x = xI がその多元環のどんな x についても成立するような元 I)が存在するときに言う。 (ja)
rdfs:label
  • 分配多元環 (ja)
  • 分配多元環 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of