フレネ・セレの公式 (ふれねせれのこうしき、英: Frenet–Serret formulas) は、3次元ユークリッド空間内 R3 内の連続で微分可能な曲線上を動く粒子の運動学的性質、あるいは、曲線自身の幾何学的性質を記述するベクトル解析の概念の一つである。

Property Value
dbo:abstract
  • フレネ・セレの公式 (ふれねせれのこうしき、英: Frenet–Serret formulas) は、3次元ユークリッド空間内 R3 内の連続で微分可能な曲線上を動く粒子の運動学的性質、あるいは、曲線自身の幾何学的性質を記述するベクトル解析の概念の一つである。 (ja)
  • フレネ・セレの公式 (ふれねせれのこうしき、英: Frenet–Serret formulas) は、3次元ユークリッド空間内 R3 内の連続で微分可能な曲線上を動く粒子の運動学的性質、あるいは、曲線自身の幾何学的性質を記述するベクトル解析の概念の一つである。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2644116 (xsd:integer)
dbo:wikiPageLength
  • 11038 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 88661973 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • フレネ・セレの公式 (ふれねせれのこうしき、英: Frenet–Serret formulas) は、3次元ユークリッド空間内 R3 内の連続で微分可能な曲線上を動く粒子の運動学的性質、あるいは、曲線自身の幾何学的性質を記述するベクトル解析の概念の一つである。 (ja)
  • フレネ・セレの公式 (ふれねせれのこうしき、英: Frenet–Serret formulas) は、3次元ユークリッド空間内 R3 内の連続で微分可能な曲線上を動く粒子の運動学的性質、あるいは、曲線自身の幾何学的性質を記述するベクトル解析の概念の一つである。 (ja)
rdfs:label
  • フレネ・セレの公式 (ja)
  • フレネ・セレの公式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of