規格化 (きかくか、英: normalization) とは、ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることである。正規化とも言う。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r=(x,y,z) とし、更に時間tも考えると、一粒子の波動関数は で表され、これは、 と規格化される。これは、ある時刻tで粒子が位置 r での微小な領域 dr(=dxdydz) に存在する確率が、 であることを示している。それを全空間(粒子の存在しうる全領域)で積分すれば、確率の総和は1となる必要がある。この要請を満たすために規格化を行う。実際の数値計算等で求められる波動関数は、そのままでは上記の積分が1となる保証はないので、積分値が1となるように規格化される。

Property Value
dbo:abstract
  • 規格化 (きかくか、英: normalization) とは、ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることである。正規化とも言う。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r=(x,y,z) とし、更に時間tも考えると、一粒子の波動関数は で表され、これは、 と規格化される。これは、ある時刻tで粒子が位置 r での微小な領域 dr(=dxdydz) に存在する確率が、 であることを示している。それを全空間(粒子の存在しうる全領域)で積分すれば、確率の総和は1となる必要がある。この要請を満たすために規格化を行う。実際の数値計算等で求められる波動関数は、そのままでは上記の積分が1となる保証はないので、積分値が1となるように規格化される。 (ja)
  • 規格化 (きかくか、英: normalization) とは、ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることである。正規化とも言う。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r=(x,y,z) とし、更に時間tも考えると、一粒子の波動関数は で表され、これは、 と規格化される。これは、ある時刻tで粒子が位置 r での微小な領域 dr(=dxdydz) に存在する確率が、 であることを示している。それを全空間(粒子の存在しうる全領域)で積分すれば、確率の総和は1となる必要がある。この要請を満たすために規格化を行う。実際の数値計算等で求められる波動関数は、そのままでは上記の積分が1となる保証はないので、積分値が1となるように規格化される。 (ja)
dbo:wikiPageID
  • 63091 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 1714 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92452530 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 規格化 (きかくか、英: normalization) とは、ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることである。正規化とも言う。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r=(x,y,z) とし、更に時間tも考えると、一粒子の波動関数は で表され、これは、 と規格化される。これは、ある時刻tで粒子が位置 r での微小な領域 dr(=dxdydz) に存在する確率が、 であることを示している。それを全空間(粒子の存在しうる全領域)で積分すれば、確率の総和は1となる必要がある。この要請を満たすために規格化を行う。実際の数値計算等で求められる波動関数は、そのままでは上記の積分が1となる保証はないので、積分値が1となるように規格化される。 (ja)
  • 規格化 (きかくか、英: normalization) とは、ある空間で粒子が一つ存在し、それを記述する波動関数をΨとすると、Ψのノルムに関して、 とすることである。正規化とも言う。積分は当該粒子の存在する全空間に対して行われる。積分の範囲は、その粒子のなす系に課された境界条件によって変わる。一つの例として周期的境界条件に基づく結晶格子では、以下のようにその単位胞内で規格化のための積分が行われる。 ここで、Vcell は単位胞の体積である。 直交座標系を考えて、r=(x,y,z) とし、更に時間tも考えると、一粒子の波動関数は で表され、これは、 と規格化される。これは、ある時刻tで粒子が位置 r での微小な領域 dr(=dxdydz) に存在する確率が、 であることを示している。それを全空間(粒子の存在しうる全領域)で積分すれば、確率の総和は1となる必要がある。この要請を満たすために規格化を行う。実際の数値計算等で求められる波動関数は、そのままでは上記の積分が1となる保証はないので、積分値が1となるように規格化される。 (ja)
rdfs:label
  • 規格化 (ja)
  • 規格化 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of