線形応答理論(線型—、せんけいおうとうりろん、英: linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、、、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例:)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸()を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。

Property Value
dbo:abstract
  • 線形応答理論(線型—、せんけいおうとうりろん、英: linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、、、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例:)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸()を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。 (ja)
  • 線形応答理論(線型—、せんけいおうとうりろん、英: linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、、、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例:)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸()を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 51759 (xsd:integer)
dbo:wikiPageLength
  • 7612 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90130212 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 線形応答理論(線型—、せんけいおうとうりろん、英: linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、、、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例:)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸()を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。 (ja)
  • 線形応答理論(線型—、せんけいおうとうりろん、英: linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、、、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例:)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸()を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。 (ja)
rdfs:label
  • 線形応答理論 (ja)
  • 線形応答理論 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of