ライプニッツの記法(ライプニッツのきほう、英語: Leibniz's notation)とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 dy dx において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f (x)dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、y/x2 と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる。

Property Value
dbo:abstract
  • ライプニッツの記法(ライプニッツのきほう、英語: Leibniz's notation)とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 dy dx において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f (x)dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、y/x2 と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる。 (ja)
  • ライプニッツの記法(ライプニッツのきほう、英語: Leibniz's notation)とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 dy dx において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f (x)dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、y/x2 と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる。 (ja)
dbo:wikiPageID
  • 1884757 (xsd:integer)
dbo:wikiPageLength
  • 4698 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92105521 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:text
  • 記事中の記号には次のような表記ゆれが存在します。 (ja)
  • 記事中の記号には次のような表記ゆれが存在します。 (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ライプニッツの記法(ライプニッツのきほう、英語: Leibniz's notation)とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 dy dx において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f (x)dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、y/x2 と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる。 (ja)
  • ライプニッツの記法(ライプニッツのきほう、英語: Leibniz's notation)とは、数学における微分の記法のひとつである。 Δx と Δy がそれぞれ x と y の有限微小変化量を表すように x と y の微小な変化量すなわち無限小変化量を表す記号として dx と dy を用いる。17世紀のドイツの哲学者・数学者であるゴットフリート・ライプニッツにより提唱された。x の関数 y すなわち、 dy dx において x に関する y の微分が、 で表されるとき、それはライプニッツによると x の微小変化量と y の微小変化量の比、すなわち で表される。ここに右辺は x における 微分 f のラグランジュの記法である。同様に、現代の数学者はしばしば不定積分、 を次の極限で表す。 ここに Δx は xi の間隔であり、ライプニッツは無限小 f (x)dx の総和 (積分記号は総和を意味する) として表現した。 このライプニッツによる考え方の長所は、その次元解析との整合性である。例えば、ライプニッツの記法では二階導関数は、 であり、y/x2 と同じ次元を持つ。また、多くの微積分に関する公式の表現との整合性があることも特筆できる。 (ja)
rdfs:label
  • ライプニッツの記法 (ja)
  • ライプニッツの記法 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is prop-ja:notableIdeas of
is owl:sameAs of
is foaf:primaryTopic of