This HTML5 document contains 35 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
template-jahttp://ja.dbpedia.org/resource/Template:
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-wikidatahttp://wikidata.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n4http://ja.dbpedia.org/resource/Category:
wikipedia-jahttp://ja.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-jahttp://ja.dbpedia.org/resource/
prop-jahttp://ja.dbpedia.org/property/

Statements

Subject Item
dbpedia-ja:純化定理
rdfs:label
純化定理
rdfs:comment
ゲーム理論における純化定理 (じゅんかていり,英: purification theorem) は,ノーベル経済学賞ジョン・ハーサニの 1973 年論文による貢献である.この定理は,ナッシュ均衡において,各プレーヤーは正確率で選ぶすべての行動について完全に無差別であるにもかかわらず,他のプレーヤーにとっても無差別にするためにそれらの行動を混合している,という不可解な側面について正当化することを狙ったものである. 混合戦略均衡は,各プレーヤーの利得が自分以外のプレーヤーには知られていないような不完備情報の変動ゲームの,均衡の極限として説明される.そのアイデアは,もとの理想化されたゲームを設計した理論家からは観察されないような,ゲームの漸次改善されていく近似として,もとのゲームで予測された混合戦略が生じてくるというものである. 戦略が外見的には混合されてみえる性質は,実際にはただ,プレーヤーがもつ利得の連続体の上の事前分布に依存して決まる閾値とあわせて純粋戦略をプレーするプレーヤーの結果である.この連続体が 0 に縮んでいくにつれて,プレーヤーたちの戦略は,もとの,変動していないにおいて予測されたナッシュ均衡に収束する.
owl:sameAs
freebase:m.0cvnmc
dct:subject
n4:数学に関する記事 n4:ゲーム理論 n4:定理
dbo:wikiPageID
2733392
dbo:wikiPageRevisionID
61478817
dbo:wikiPageWikiLink
dbpedia-ja:ゲーム理論 n4:ゲーム理論 dbpedia-ja:支配戦略 n4:定理 dbpedia-ja:ベイジアンゲーム dbpedia-ja:事前確率 dbpedia-ja:ナッシュ均衡 dbpedia-ja:病的な_(数学) dbpedia-ja:測度論 dbpedia-ja:不完備情報ゲーム dbpedia-ja:チキンゲーム dbpedia-ja:ノーベル経済学賞 n4:数学に関する記事 dbpedia-ja:完備情報ゲーム dbpedia-ja:純粋戦略 dbpedia-ja:連続体濃度 dbpedia-ja:進化ゲーム dbpedia-ja:ジョン・ハーサニ dbpedia-ja:混合戦略
prop-ja:wikiPageUsesTemplate
template-ja:ゲーム理論 template-ja:Lang-en-short
dbo:abstract
ゲーム理論における純化定理 (じゅんかていり,英: purification theorem) は,ノーベル経済学賞ジョン・ハーサニの 1973 年論文による貢献である.この定理は,ナッシュ均衡において,各プレーヤーは正確率で選ぶすべての行動について完全に無差別であるにもかかわらず,他のプレーヤーにとっても無差別にするためにそれらの行動を混合している,という不可解な側面について正当化することを狙ったものである. 混合戦略均衡は,各プレーヤーの利得が自分以外のプレーヤーには知られていないような不完備情報の変動ゲームの,均衡の極限として説明される.そのアイデアは,もとの理想化されたゲームを設計した理論家からは観察されないような,ゲームの漸次改善されていく近似として,もとのゲームで予測された混合戦略が生じてくるというものである. 戦略が外見的には混合されてみえる性質は,実際にはただ,プレーヤーがもつ利得の連続体の上の事前分布に依存して決まる閾値とあわせて純粋戦略をプレーするプレーヤーの結果である.この連続体が 0 に縮んでいくにつれて,プレーヤーたちの戦略は,もとの,変動していないにおいて予測されたナッシュ均衡に収束する. この結果は,進化ゲーム理論の今日の研究における重要な一面にもなっている.そこではこの変動する値は,ゲームをプレーする集団内で無作為にペアになるプレーヤーたちのタイプの上の分布と解釈されている.
dbo:wikiPageLength
3443
prov:wasDerivedFrom
wikipedia-ja:純化定理?oldid=61478817&ns=0
foaf:isPrimaryTopicOf
wikipedia-ja:純化定理
Subject Item
dbpedia-wikidata:Q5313424
owl:sameAs
dbpedia-ja:純化定理
Subject Item
wikipedia-ja:純化定理
foaf:primaryTopic
dbpedia-ja:純化定理