藤村の三角形問題(ふじむらのさんかっけいもんだい、英: Kobon triangle problem)は離散幾何学の未解決問題で、により初めて述べられた。この問題は、平面上に k 本の直線を引くときに重なり合わずに作ることのできる三角形の最大数 N(k) を求めるものである。ユークリッド平面ではなく射影平面で考え、三角形はその3辺以外の直線と交わらないこと、という条件を課す変種もある。