有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。

Property Value
dbo:abstract
  • 有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。 (ja)
  • 有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 804726 (xsd:integer)
dbo:wikiPageLength
  • 3927 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91434227 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。 (ja)
  • 有機亜鉛化合物(ゆうきあえんかごうぶつ)は炭素−亜鉛結合を持つ有機化合物であり、有機亜鉛化学においてその物理的性質・合成法・反応が研究される。 初めて作られたのは1849年のエドワード・フランクランドによるジエチル亜鉛であり、これは同時に金属−炭素間のσ結合を有する最初の化合物でもあった。有機亜鉛化合物の多くは自然発火しやすいため取り扱いが難しい。通常酸素に弱く、多くの溶媒に可溶だが、プロトン性溶媒では分解する。たいていの反応に用いる場合には系中で発生させ、単離せずにそのまま用いる。また、窒素やアルゴンなど不活性ガスの雰囲気下で操作しなければならない。 主に3つのグループ、オルガノ亜鉛ハライド R−Zn−X (Xはハロゲン)、ジオルガノ亜鉛 R−Zn−R (Rはアルキル基またはアリール基)、リチウムジンケート・マグネシウムジンケート M+R3Zn− (Mはリチウムまたはマグネシウム)に分類される。 炭素−亜鉛結合は電気陰性度の差(炭素 2.55、亜鉛 1.65)により炭素側に分極している。ジオルガノ亜鉛は常に単量体であるのに対して、オルガノ亜鉛ハライドはハロゲンの架橋によって会合体として存在し、グリニャール試薬と同様にシュレンク平衡を起こす。 (ja)
rdfs:label
  • 有機亜鉛化合物 (ja)
  • 有機亜鉛化合物 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of