Property |
Value |
dbo:abstract
|
- 二重指数関数(にじゅうしすうかんすう、英: double exponential function)とは、指数関数の肩に指数関数を持つ関数である。一般形は 。指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が a > 1, b > 1 を満たすなら、二重指数関数は通常の指数関数よりも速く大きくなる。また二重指数関数は階乗より急速に増大する。階乗は通常の(一重の)指数関数よりも速く増大するため、充分大きい x について以下の関係が成り立つ(e はネイピア数): 二重指数関数に比べて速く増大する関数として、例えばテトレーションとアッカーマン関数がよく知られている(その他さまざまな関数の増加率ついては例えばランダウの記号を参照のこと)。 二重指数関数 の逆関数は、二重対数 である。 (ja)
- 二重指数関数(にじゅうしすうかんすう、英: double exponential function)とは、指数関数の肩に指数関数を持つ関数である。一般形は 。指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が a > 1, b > 1 を満たすなら、二重指数関数は通常の指数関数よりも速く大きくなる。また二重指数関数は階乗より急速に増大する。階乗は通常の(一重の)指数関数よりも速く増大するため、充分大きい x について以下の関係が成り立つ(e はネイピア数): 二重指数関数に比べて速く増大する関数として、例えばテトレーションとアッカーマン関数がよく知られている(その他さまざまな関数の増加率ついては例えばランダウの記号を参照のこと)。 二重指数関数 の逆関数は、二重対数 である。 (ja)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9441 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 二重指数関数(にじゅうしすうかんすう、英: double exponential function)とは、指数関数の肩に指数関数を持つ関数である。一般形は 。指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が a > 1, b > 1 を満たすなら、二重指数関数は通常の指数関数よりも速く大きくなる。また二重指数関数は階乗より急速に増大する。階乗は通常の(一重の)指数関数よりも速く増大するため、充分大きい x について以下の関係が成り立つ(e はネイピア数): 二重指数関数に比べて速く増大する関数として、例えばテトレーションとアッカーマン関数がよく知られている(その他さまざまな関数の増加率ついては例えばランダウの記号を参照のこと)。 二重指数関数 の逆関数は、二重対数 である。 (ja)
- 二重指数関数(にじゅうしすうかんすう、英: double exponential function)とは、指数関数の肩に指数関数を持つ関数である。一般形は 。指数関数と同様に、二重指数関数型積分公式など、応用上はネイピア数を底に取ったものがよく使われる。 指数の底が a > 1, b > 1 を満たすなら、二重指数関数は通常の指数関数よりも速く大きくなる。また二重指数関数は階乗より急速に増大する。階乗は通常の(一重の)指数関数よりも速く増大するため、充分大きい x について以下の関係が成り立つ(e はネイピア数): 二重指数関数に比べて速く増大する関数として、例えばテトレーションとアッカーマン関数がよく知られている(その他さまざまな関数の増加率ついては例えばランダウの記号を参照のこと)。 二重指数関数 の逆関数は、二重対数 である。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |