Property |
Value |
dbo:abstract
|
- リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
- リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2921 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dct:subject
| |
rdfs:comment
|
- リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
- リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
|
rdfs:label
|
- リン31核磁気共鳴 (ja)
- リン31核磁気共鳴 (ja)
|
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |