リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。

Property Value
dbo:abstract
  • リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
  • リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
dbo:wikiPageID
  • 2771111 (xsd:integer)
dbo:wikiPageLength
  • 2921 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 73608509 (xsd:integer)
dbo:wikiPageWikiLink
dct:subject
rdfs:comment
  • リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
  • リン31核磁気共鳴(リン31かくじききょうめい、31P NMR)分光法は分析手法の一つである。31Pの同位体存在比が100%かつ比較的高い磁気回転比を有するため、溶液31P NMRはよりありふれたNMR手法の一つである。31P核のスピン量子数は1/2であるため、スペクトルの解釈が比較的容易である。リンは有機化合物や錯体(ホスフィンとして)中に一般的に見られるため、日常的に31P NMRを測定することは有用である。 (ja)
rdfs:label
  • リン31核磁気共鳴 (ja)
  • リン31核磁気共鳴 (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of