数学では、ウィリアム・バーランス・ダグラス・ホッジ(William Vallance Douglas Hodge)の名前に因んで付けられたホッジ構造(英: Hodge structure)とは、滑らかでコンパクトなケーラー多様体のコホモロジー群にホッジ理論が与えた代数構造と同様の、線形代数のレベルの代数構造である。混合ホッジ構造(英: mixed Hodge structure)は、ホッジ構造のすべての複素多様体(たとえ特異点を持ったり、非であったとしても)への一般化で、1970年にピエール・ドリーニュ(Pierre Deligne)により定義され、ホッジ構造の変形(英: variations of Hodge structure)とは、多様体によってパラメトライズされたホッジ構造の族であり、最初にフィリップ・グリフィス(P. A. Griffiths)により1968年に研究された。これらのすべての概念は、さらに1989年に斎藤盛彦により複素多様体の上の混合ホッジ加群(英: mixed Hodge module)へと一般化された。

Property Value
dbo:abstract
  • 数学では、ウィリアム・バーランス・ダグラス・ホッジ(William Vallance Douglas Hodge)の名前に因んで付けられたホッジ構造(英: Hodge structure)とは、滑らかでコンパクトなケーラー多様体のコホモロジー群にホッジ理論が与えた代数構造と同様の、線形代数のレベルの代数構造である。混合ホッジ構造(英: mixed Hodge structure)は、ホッジ構造のすべての複素多様体(たとえ特異点を持ったり、非であったとしても)への一般化で、1970年にピエール・ドリーニュ(Pierre Deligne)により定義され、ホッジ構造の変形(英: variations of Hodge structure)とは、多様体によってパラメトライズされたホッジ構造の族であり、最初にフィリップ・グリフィス(P. A. Griffiths)により1968年に研究された。これらのすべての概念は、さらに1989年に斎藤盛彦により複素多様体の上の混合ホッジ加群(英: mixed Hodge module)へと一般化された。 (ja)
  • 数学では、ウィリアム・バーランス・ダグラス・ホッジ(William Vallance Douglas Hodge)の名前に因んで付けられたホッジ構造(英: Hodge structure)とは、滑らかでコンパクトなケーラー多様体のコホモロジー群にホッジ理論が与えた代数構造と同様の、線形代数のレベルの代数構造である。混合ホッジ構造(英: mixed Hodge structure)は、ホッジ構造のすべての複素多様体(たとえ特異点を持ったり、非であったとしても)への一般化で、1970年にピエール・ドリーニュ(Pierre Deligne)により定義され、ホッジ構造の変形(英: variations of Hodge structure)とは、多様体によってパラメトライズされたホッジ構造の族であり、最初にフィリップ・グリフィス(P. A. Griffiths)により1968年に研究された。これらのすべての概念は、さらに1989年に斎藤盛彦により複素多様体の上の混合ホッジ加群(英: mixed Hodge module)へと一般化された。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2739628 (xsd:integer)
dbo:wikiPageLength
  • 15046 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91214044 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:author
  • A.I. Ovseevich (ja)
  • J. Steenbrink (ja)
  • A.I. Ovseevich (ja)
  • J. Steenbrink (ja)
prop-ja:title
  • Hodge structure (ja)
  • Variation of Hodge structure (ja)
  • Hodge structure (ja)
  • Variation of Hodge structure (ja)
prop-ja:urlname
  • Hodge_structure (ja)
  • Variation_of_Hodge_structure (ja)
  • Hodge_structure (ja)
  • Variation_of_Hodge_structure (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学では、ウィリアム・バーランス・ダグラス・ホッジ(William Vallance Douglas Hodge)の名前に因んで付けられたホッジ構造(英: Hodge structure)とは、滑らかでコンパクトなケーラー多様体のコホモロジー群にホッジ理論が与えた代数構造と同様の、線形代数のレベルの代数構造である。混合ホッジ構造(英: mixed Hodge structure)は、ホッジ構造のすべての複素多様体(たとえ特異点を持ったり、非であったとしても)への一般化で、1970年にピエール・ドリーニュ(Pierre Deligne)により定義され、ホッジ構造の変形(英: variations of Hodge structure)とは、多様体によってパラメトライズされたホッジ構造の族であり、最初にフィリップ・グリフィス(P. A. Griffiths)により1968年に研究された。これらのすべての概念は、さらに1989年に斎藤盛彦により複素多様体の上の混合ホッジ加群(英: mixed Hodge module)へと一般化された。 (ja)
  • 数学では、ウィリアム・バーランス・ダグラス・ホッジ(William Vallance Douglas Hodge)の名前に因んで付けられたホッジ構造(英: Hodge structure)とは、滑らかでコンパクトなケーラー多様体のコホモロジー群にホッジ理論が与えた代数構造と同様の、線形代数のレベルの代数構造である。混合ホッジ構造(英: mixed Hodge structure)は、ホッジ構造のすべての複素多様体(たとえ特異点を持ったり、非であったとしても)への一般化で、1970年にピエール・ドリーニュ(Pierre Deligne)により定義され、ホッジ構造の変形(英: variations of Hodge structure)とは、多様体によってパラメトライズされたホッジ構造の族であり、最初にフィリップ・グリフィス(P. A. Griffiths)により1968年に研究された。これらのすべての概念は、さらに1989年に斎藤盛彦により複素多様体の上の混合ホッジ加群(英: mixed Hodge module)へと一般化された。 (ja)
rdfs:label
  • ホッジ構造 (ja)
  • ホッジ構造 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of