ブラムの加速定理(ぶらむのかそくていり、英: Blum's speedup theorem)は計算複雑性理論における計算可能関数の複雑性に関する基本定理であり、1967年にマヌエル・ブラムによって示された。 計算可能関数は無限個の相異なるプログラム表現を持つ。アルゴリズムの理論はそのようなプログラムから与えられた複雑性測度に対して最小となるプログラム(最適なプログラム)を探る。ブラムの加速定理は、いかなる複雑性測度に対しても最適なプログラムの存在しないような関数が複雑性測度に応じて存在することを述べる。これはまた任意の関数に対してその計算複雑性を割り当てる方法、つまり任意の関数 f に対して f を表現する最適なプログラムの複雑性を割り当てる方法が存在しないことを示している。このことは特定の具体的な関数について最適なプログラムの複雑性を探すことができないということを意味しない。

Property Value
dbo:abstract
  • ブラムの加速定理(ぶらむのかそくていり、英: Blum's speedup theorem)は計算複雑性理論における計算可能関数の複雑性に関する基本定理であり、1967年にマヌエル・ブラムによって示された。 計算可能関数は無限個の相異なるプログラム表現を持つ。アルゴリズムの理論はそのようなプログラムから与えられた複雑性測度に対して最小となるプログラム(最適なプログラム)を探る。ブラムの加速定理は、いかなる複雑性測度に対しても最適なプログラムの存在しないような関数が複雑性測度に応じて存在することを述べる。これはまた任意の関数に対してその計算複雑性を割り当てる方法、つまり任意の関数 f に対して f を表現する最適なプログラムの複雑性を割り当てる方法が存在しないことを示している。このことは特定の具体的な関数について最適なプログラムの複雑性を探すことができないということを意味しない。 (ja)
  • ブラムの加速定理(ぶらむのかそくていり、英: Blum's speedup theorem)は計算複雑性理論における計算可能関数の複雑性に関する基本定理であり、1967年にマヌエル・ブラムによって示された。 計算可能関数は無限個の相異なるプログラム表現を持つ。アルゴリズムの理論はそのようなプログラムから与えられた複雑性測度に対して最小となるプログラム(最適なプログラム)を探る。ブラムの加速定理は、いかなる複雑性測度に対しても最適なプログラムの存在しないような関数が複雑性測度に応じて存在することを述べる。これはまた任意の関数に対してその計算複雑性を割り当てる方法、つまり任意の関数 f に対して f を表現する最適なプログラムの複雑性を割り当てる方法が存在しないことを示している。このことは特定の具体的な関数について最適なプログラムの複雑性を探すことができないということを意味しない。 (ja)
dbo:wikiPageID
  • 3047564 (xsd:integer)
dbo:wikiPageLength
  • 1605 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 70076749 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Blum's Speed-Up Theorem (ja)
  • Blum's Speed-Up Theorem (ja)
prop-en:urlname
  • BlumsSpeed-UpTheorem (ja)
  • BlumsSpeed-UpTheorem (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • ブラムの加速定理(ぶらむのかそくていり、英: Blum's speedup theorem)は計算複雑性理論における計算可能関数の複雑性に関する基本定理であり、1967年にマヌエル・ブラムによって示された。 計算可能関数は無限個の相異なるプログラム表現を持つ。アルゴリズムの理論はそのようなプログラムから与えられた複雑性測度に対して最小となるプログラム(最適なプログラム)を探る。ブラムの加速定理は、いかなる複雑性測度に対しても最適なプログラムの存在しないような関数が複雑性測度に応じて存在することを述べる。これはまた任意の関数に対してその計算複雑性を割り当てる方法、つまり任意の関数 f に対して f を表現する最適なプログラムの複雑性を割り当てる方法が存在しないことを示している。このことは特定の具体的な関数について最適なプログラムの複雑性を探すことができないということを意味しない。 (ja)
  • ブラムの加速定理(ぶらむのかそくていり、英: Blum's speedup theorem)は計算複雑性理論における計算可能関数の複雑性に関する基本定理であり、1967年にマヌエル・ブラムによって示された。 計算可能関数は無限個の相異なるプログラム表現を持つ。アルゴリズムの理論はそのようなプログラムから与えられた複雑性測度に対して最小となるプログラム(最適なプログラム)を探る。ブラムの加速定理は、いかなる複雑性測度に対しても最適なプログラムの存在しないような関数が複雑性測度に応じて存在することを述べる。これはまた任意の関数に対してその計算複雑性を割り当てる方法、つまり任意の関数 f に対して f を表現する最適なプログラムの複雑性を割り当てる方法が存在しないことを示している。このことは特定の具体的な関数について最適なプログラムの複雑性を探すことができないということを意味しない。 (ja)
rdfs:label
  • ブラムの加速定理 (ja)
  • ブラムの加速定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of