ハイパーパラメータ(超母数、英語: Hyperparameter)とは、推論や予測の枠組みの中で決定されないパラメータのことを指す。損失関数の正則化項の影響度を表す係数などが該当する。ハイパーパラメータは、多くの場合、あらかじめ値の候補を用意しておき、各候補に対して、それを一定の値として一旦採用し、予測や推論を行い、最終的に最も性能の良いモデルのハイパーパラメータを採用する。よって、ハイパーパラメータには人間の任意性がある。これを解決する方法として、ハイパーパラメータを確率変数と見做し、事前分布を導入する、というベイズ的手法が存在する。

Property Value
dbo:abstract
  • ハイパーパラメータ(超母数、英語: Hyperparameter)とは、推論や予測の枠組みの中で決定されないパラメータのことを指す。損失関数の正則化項の影響度を表す係数などが該当する。ハイパーパラメータは、多くの場合、あらかじめ値の候補を用意しておき、各候補に対して、それを一定の値として一旦採用し、予測や推論を行い、最終的に最も性能の良いモデルのハイパーパラメータを採用する。よって、ハイパーパラメータには人間の任意性がある。これを解決する方法として、ハイパーパラメータを確率変数と見做し、事前分布を導入する、というベイズ的手法が存在する。 (ja)
  • ハイパーパラメータ(超母数、英語: Hyperparameter)とは、推論や予測の枠組みの中で決定されないパラメータのことを指す。損失関数の正則化項の影響度を表す係数などが該当する。ハイパーパラメータは、多くの場合、あらかじめ値の候補を用意しておき、各候補に対して、それを一定の値として一旦採用し、予測や推論を行い、最終的に最も性能の良いモデルのハイパーパラメータを採用する。よって、ハイパーパラメータには人間の任意性がある。これを解決する方法として、ハイパーパラメータを確率変数と見做し、事前分布を導入する、というベイズ的手法が存在する。 (ja)
dbo:wikiPageID
  • 3945496 (xsd:integer)
dbo:wikiPageLength
  • 655 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91769261 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
prop-en:wikify
  • 2019 (xsd:integer)
prop-en:出典の明記
  • 2019 (xsd:integer)
prop-en:分野
  • 特筆性 (ja)
  • 特筆性 (ja)
prop-en:特筆性
  • 2019 (xsd:integer)
prop-en:独自研究
  • 2019 (xsd:integer)
dct:subject
rdfs:comment
  • ハイパーパラメータ(超母数、英語: Hyperparameter)とは、推論や予測の枠組みの中で決定されないパラメータのことを指す。損失関数の正則化項の影響度を表す係数などが該当する。ハイパーパラメータは、多くの場合、あらかじめ値の候補を用意しておき、各候補に対して、それを一定の値として一旦採用し、予測や推論を行い、最終的に最も性能の良いモデルのハイパーパラメータを採用する。よって、ハイパーパラメータには人間の任意性がある。これを解決する方法として、ハイパーパラメータを確率変数と見做し、事前分布を導入する、というベイズ的手法が存在する。 (ja)
  • ハイパーパラメータ(超母数、英語: Hyperparameter)とは、推論や予測の枠組みの中で決定されないパラメータのことを指す。損失関数の正則化項の影響度を表す係数などが該当する。ハイパーパラメータは、多くの場合、あらかじめ値の候補を用意しておき、各候補に対して、それを一定の値として一旦採用し、予測や推論を行い、最終的に最も性能の良いモデルのハイパーパラメータを採用する。よって、ハイパーパラメータには人間の任意性がある。これを解決する方法として、ハイパーパラメータを確率変数と見做し、事前分布を導入する、というベイズ的手法が存在する。 (ja)
rdfs:label
  • ハイパーパラメータ (ja)
  • ハイパーパラメータ (ja)
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of