チャネル長変調(channel length modulation、CLM)とはMOSFETでの短チャネル効果の一つであり、ドレイン電圧が大きい場合にドレイン電圧が増加すると反転チャネル領域の長さが短くなること。ドレイン電圧が増加するとチャネル長変調によって電流が増加し、出力抵抗が減少する。チャネル長変調はMOSFETだけでなく全ての電界効果トランジスタで起こる。 チャネル長変調を理解するために、チャネルのピンチオフの概念を導入する。キャリアがゲートに引きつけられることでチャネルが形成する。チャネルを流れる電流はほとんど一定で、飽和モードではドレイン電圧と無関係である。しかしドレインの近傍では、ゲート電圧とドレイン電圧の両方が電場を決定する。チャネルでの流れの代わりに、ピンチオフ点を超えると表面下でのキャリアの流れが可能になる。なぜならドレイン電圧とゲート電圧どちらも電流をコントロールするからである。右図においてチャネルは点線で示されており、ドレインに近くにつれて狭くなる。形成された反転層の末端(ピンチオフ点)とドレインとの間(ピンチオフ領域)に反転していないシリコンの領域ができる。

Property Value
dbo:abstract
  • チャネル長変調(channel length modulation、CLM)とはMOSFETでの短チャネル効果の一つであり、ドレイン電圧が大きい場合にドレイン電圧が増加すると反転チャネル領域の長さが短くなること。ドレイン電圧が増加するとチャネル長変調によって電流が増加し、出力抵抗が減少する。チャネル長変調はMOSFETだけでなく全ての電界効果トランジスタで起こる。 チャネル長変調を理解するために、チャネルのピンチオフの概念を導入する。キャリアがゲートに引きつけられることでチャネルが形成する。チャネルを流れる電流はほとんど一定で、飽和モードではドレイン電圧と無関係である。しかしドレインの近傍では、ゲート電圧とドレイン電圧の両方が電場を決定する。チャネルでの流れの代わりに、ピンチオフ点を超えると表面下でのキャリアの流れが可能になる。なぜならドレイン電圧とゲート電圧どちらも電流をコントロールするからである。右図においてチャネルは点線で示されており、ドレインに近くにつれて狭くなる。形成された反転層の末端(ピンチオフ点)とドレインとの間(ピンチオフ領域)に反転していないシリコンの領域ができる。 ドレイン電圧が増加すると、その電流のコントロールはさらにソースへ広がる。よって反転してない領域はソースへ広がり、チャネル領域を短くする。これをチャネル長変調と呼ぶ。抵抗は長さに比例するため、チャネルが短くなると抵抗が減少し、飽和でのMOSFETのドレイン電圧を増加すると電流は増加する。チャネル長変調の効果はソース-ドレイン分離が短くなると、ドレイン接合が深くなると、また酸化絶縁膜が薄くなると顕著になる。 弱い反転領域ではチャネル長変調と同様のドレインの影響があり、デバイスのスイッチオフの振る舞いが貧しくなる。これはドレイン誘起障壁低下または閾値電圧のドレイン誘起低下として知られる。バイポーラデバイスでは、コレクター電圧が減少するとベースナローイングにより同じような電流増加が見られ、として知られる。電流の効果の類似性により、「チャネル長変調」の代わりの名前としてMOSFETでも「アーリー効果」という言葉は使われる。 (ja)
  • チャネル長変調(channel length modulation、CLM)とはMOSFETでの短チャネル効果の一つであり、ドレイン電圧が大きい場合にドレイン電圧が増加すると反転チャネル領域の長さが短くなること。ドレイン電圧が増加するとチャネル長変調によって電流が増加し、出力抵抗が減少する。チャネル長変調はMOSFETだけでなく全ての電界効果トランジスタで起こる。 チャネル長変調を理解するために、チャネルのピンチオフの概念を導入する。キャリアがゲートに引きつけられることでチャネルが形成する。チャネルを流れる電流はほとんど一定で、飽和モードではドレイン電圧と無関係である。しかしドレインの近傍では、ゲート電圧とドレイン電圧の両方が電場を決定する。チャネルでの流れの代わりに、ピンチオフ点を超えると表面下でのキャリアの流れが可能になる。なぜならドレイン電圧とゲート電圧どちらも電流をコントロールするからである。右図においてチャネルは点線で示されており、ドレインに近くにつれて狭くなる。形成された反転層の末端(ピンチオフ点)とドレインとの間(ピンチオフ領域)に反転していないシリコンの領域ができる。 ドレイン電圧が増加すると、その電流のコントロールはさらにソースへ広がる。よって反転してない領域はソースへ広がり、チャネル領域を短くする。これをチャネル長変調と呼ぶ。抵抗は長さに比例するため、チャネルが短くなると抵抗が減少し、飽和でのMOSFETのドレイン電圧を増加すると電流は増加する。チャネル長変調の効果はソース-ドレイン分離が短くなると、ドレイン接合が深くなると、また酸化絶縁膜が薄くなると顕著になる。 弱い反転領域ではチャネル長変調と同様のドレインの影響があり、デバイスのスイッチオフの振る舞いが貧しくなる。これはドレイン誘起障壁低下または閾値電圧のドレイン誘起低下として知られる。バイポーラデバイスでは、コレクター電圧が減少するとベースナローイングにより同じような電流増加が見られ、として知られる。電流の効果の類似性により、「チャネル長変調」の代わりの名前としてMOSFETでも「アーリー効果」という言葉は使われる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3893667 (xsd:integer)
dbo:wikiPageLength
  • 4052 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 71351659 (xsd:integer)
dbo:wikiPageWikiLink
dct:subject
rdfs:comment
  • チャネル長変調(channel length modulation、CLM)とはMOSFETでの短チャネル効果の一つであり、ドレイン電圧が大きい場合にドレイン電圧が増加すると反転チャネル領域の長さが短くなること。ドレイン電圧が増加するとチャネル長変調によって電流が増加し、出力抵抗が減少する。チャネル長変調はMOSFETだけでなく全ての電界効果トランジスタで起こる。 チャネル長変調を理解するために、チャネルのピンチオフの概念を導入する。キャリアがゲートに引きつけられることでチャネルが形成する。チャネルを流れる電流はほとんど一定で、飽和モードではドレイン電圧と無関係である。しかしドレインの近傍では、ゲート電圧とドレイン電圧の両方が電場を決定する。チャネルでの流れの代わりに、ピンチオフ点を超えると表面下でのキャリアの流れが可能になる。なぜならドレイン電圧とゲート電圧どちらも電流をコントロールするからである。右図においてチャネルは点線で示されており、ドレインに近くにつれて狭くなる。形成された反転層の末端(ピンチオフ点)とドレインとの間(ピンチオフ領域)に反転していないシリコンの領域ができる。 (ja)
  • チャネル長変調(channel length modulation、CLM)とはMOSFETでの短チャネル効果の一つであり、ドレイン電圧が大きい場合にドレイン電圧が増加すると反転チャネル領域の長さが短くなること。ドレイン電圧が増加するとチャネル長変調によって電流が増加し、出力抵抗が減少する。チャネル長変調はMOSFETだけでなく全ての電界効果トランジスタで起こる。 チャネル長変調を理解するために、チャネルのピンチオフの概念を導入する。キャリアがゲートに引きつけられることでチャネルが形成する。チャネルを流れる電流はほとんど一定で、飽和モードではドレイン電圧と無関係である。しかしドレインの近傍では、ゲート電圧とドレイン電圧の両方が電場を決定する。チャネルでの流れの代わりに、ピンチオフ点を超えると表面下でのキャリアの流れが可能になる。なぜならドレイン電圧とゲート電圧どちらも電流をコントロールするからである。右図においてチャネルは点線で示されており、ドレインに近くにつれて狭くなる。形成された反転層の末端(ピンチオフ点)とドレインとの間(ピンチオフ領域)に反転していないシリコンの領域ができる。 (ja)
rdfs:label
  • チャネル長変調 (ja)
  • チャネル長変調 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of