ザイフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω = K 、すなわち Ω の境界が結び目 K になっているときをいう。例えば円盤D2は自明な結び目のザイフェルト曲面である。併し(一回半ひねりの)メビウスの輪は三葉結び目を境界に持つ曲面であるが、向き付け可能でないため、これはザイフェルト曲面ではない。さらに結び目 K に向きを込めて考えているときの K のザイフェルト曲面とは、実際に向きを付けられた曲面 Ω であって、その境界 ∂Ω が( Ω 自身の向きから自然に誘導される)向きを込めて K と一致しているものをいう。 どのような結び目に対しても、そのような曲面が存在することを最初に証明したのはフランクル-ポントリャーギン(1930年)であるが、後に実際にそのような曲面を構成するアルゴリズムを見付けた(1934年)に因んで、ザイフェルト曲面と呼ばれる。

Property Value
dbo:abstract
  • ザイフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω = K 、すなわち Ω の境界が結び目 K になっているときをいう。例えば円盤D2は自明な結び目のザイフェルト曲面である。併し(一回半ひねりの)メビウスの輪は三葉結び目を境界に持つ曲面であるが、向き付け可能でないため、これはザイフェルト曲面ではない。さらに結び目 K に向きを込めて考えているときの K のザイフェルト曲面とは、実際に向きを付けられた曲面 Ω であって、その境界 ∂Ω が( Ω 自身の向きから自然に誘導される)向きを込めて K と一致しているものをいう。 どのような結び目に対しても、そのような曲面が存在することを最初に証明したのはフランクル-ポントリャーギン(1930年)であるが、後に実際にそのような曲面を構成するアルゴリズムを見付けた(1934年)に因んで、ザイフェルト曲面と呼ばれる。 (ja)
  • ザイフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω = K 、すなわち Ω の境界が結び目 K になっているときをいう。例えば円盤D2は自明な結び目のザイフェルト曲面である。併し(一回半ひねりの)メビウスの輪は三葉結び目を境界に持つ曲面であるが、向き付け可能でないため、これはザイフェルト曲面ではない。さらに結び目 K に向きを込めて考えているときの K のザイフェルト曲面とは、実際に向きを付けられた曲面 Ω であって、その境界 ∂Ω が( Ω 自身の向きから自然に誘導される)向きを込めて K と一致しているものをいう。 どのような結び目に対しても、そのような曲面が存在することを最初に証明したのはフランクル-ポントリャーギン(1930年)であるが、後に実際にそのような曲面を構成するアルゴリズムを見付けた(1934年)に因んで、ザイフェルト曲面と呼ばれる。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 208454 (xsd:integer)
dbo:wikiPageLength
  • 2373 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91213514 (xsd:integer)
dbo:wikiPageWikiLink
dct:subject
rdfs:comment
  • ザイフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω = K 、すなわち Ω の境界が結び目 K になっているときをいう。例えば円盤D2は自明な結び目のザイフェルト曲面である。併し(一回半ひねりの)メビウスの輪は三葉結び目を境界に持つ曲面であるが、向き付け可能でないため、これはザイフェルト曲面ではない。さらに結び目 K に向きを込めて考えているときの K のザイフェルト曲面とは、実際に向きを付けられた曲面 Ω であって、その境界 ∂Ω が( Ω 自身の向きから自然に誘導される)向きを込めて K と一致しているものをいう。 どのような結び目に対しても、そのような曲面が存在することを最初に証明したのはフランクル-ポントリャーギン(1930年)であるが、後に実際にそのような曲面を構成するアルゴリズムを見付けた(1934年)に因んで、ザイフェルト曲面と呼ばれる。 (ja)
  • ザイフェルト曲面またはザイフェルト膜とは、結び目(あるいは絡み目、以下同様)を境界に持つような向き付け可能(つまり表裏のある)曲面である。より正確には以下の通りである: R3(またはS3など)内の境界を持つコンパクトかつ向き付け可能な二次元曲面 Ω が結び目 K のザイフェルト曲面であるとは、 ∂Ω = K 、すなわち Ω の境界が結び目 K になっているときをいう。例えば円盤D2は自明な結び目のザイフェルト曲面である。併し(一回半ひねりの)メビウスの輪は三葉結び目を境界に持つ曲面であるが、向き付け可能でないため、これはザイフェルト曲面ではない。さらに結び目 K に向きを込めて考えているときの K のザイフェルト曲面とは、実際に向きを付けられた曲面 Ω であって、その境界 ∂Ω が( Ω 自身の向きから自然に誘導される)向きを込めて K と一致しているものをいう。 どのような結び目に対しても、そのような曲面が存在することを最初に証明したのはフランクル-ポントリャーギン(1930年)であるが、後に実際にそのような曲面を構成するアルゴリズムを見付けた(1934年)に因んで、ザイフェルト曲面と呼ばれる。 (ja)
rdfs:label
  • ザイフェルト曲面 (ja)
  • ザイフェルト曲面 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of