Property |
Value |
dbo:abstract
|
- アインシュタイン=ブリルアン=ケラー量子化条件(アインシュタイン=ブリルアン=ケラーりょうしかじょうけん、英: Einstein–Brillouin–Keller quantum condition)またはEBK量子化条件とは、物理学、特に量子力学において、可積分な系における半古典論的な量子条件である。独立な多自由度をもつ周期系に対するボーア=ゾンマーフェルトの量子化条件の拡張となっている。1917年にアルベルト・アインシュタインにより提案され、後に、レオン・ブリルアンやジョセフ・ケラーによって、理論の展開及び補正がなされた。相空間におけると呼ばれる構造を基にした量子化であり、トーラス量子化とも呼ばれる。不変トーラスの存在は系の可積分性に対応しており、不変トーラスが存在しないカオスを示す系での半古典論的な量子化の問題は、量子カオスの研究の中で注目されるようになった。 (ja)
- アインシュタイン=ブリルアン=ケラー量子化条件(アインシュタイン=ブリルアン=ケラーりょうしかじょうけん、英: Einstein–Brillouin–Keller quantum condition)またはEBK量子化条件とは、物理学、特に量子力学において、可積分な系における半古典論的な量子条件である。独立な多自由度をもつ周期系に対するボーア=ゾンマーフェルトの量子化条件の拡張となっている。1917年にアルベルト・アインシュタインにより提案され、後に、レオン・ブリルアンやジョセフ・ケラーによって、理論の展開及び補正がなされた。相空間におけると呼ばれる構造を基にした量子化であり、トーラス量子化とも呼ばれる。不変トーラスの存在は系の可積分性に対応しており、不変トーラスが存在しないカオスを示す系での半古典論的な量子化の問題は、量子カオスの研究の中で注目されるようになった。 (ja)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4117 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- アインシュタイン=ブリルアン=ケラー量子化条件(アインシュタイン=ブリルアン=ケラーりょうしかじょうけん、英: Einstein–Brillouin–Keller quantum condition)またはEBK量子化条件とは、物理学、特に量子力学において、可積分な系における半古典論的な量子条件である。独立な多自由度をもつ周期系に対するボーア=ゾンマーフェルトの量子化条件の拡張となっている。1917年にアルベルト・アインシュタインにより提案され、後に、レオン・ブリルアンやジョセフ・ケラーによって、理論の展開及び補正がなされた。相空間におけると呼ばれる構造を基にした量子化であり、トーラス量子化とも呼ばれる。不変トーラスの存在は系の可積分性に対応しており、不変トーラスが存在しないカオスを示す系での半古典論的な量子化の問題は、量子カオスの研究の中で注目されるようになった。 (ja)
- アインシュタイン=ブリルアン=ケラー量子化条件(アインシュタイン=ブリルアン=ケラーりょうしかじょうけん、英: Einstein–Brillouin–Keller quantum condition)またはEBK量子化条件とは、物理学、特に量子力学において、可積分な系における半古典論的な量子条件である。独立な多自由度をもつ周期系に対するボーア=ゾンマーフェルトの量子化条件の拡張となっている。1917年にアルベルト・アインシュタインにより提案され、後に、レオン・ブリルアンやジョセフ・ケラーによって、理論の展開及び補正がなされた。相空間におけると呼ばれる構造を基にした量子化であり、トーラス量子化とも呼ばれる。不変トーラスの存在は系の可積分性に対応しており、不変トーラスが存在しないカオスを示す系での半古典論的な量子化の問題は、量子カオスの研究の中で注目されるようになった。 (ja)
|
rdfs:label
|
- アインシュタイン=ブリルアン=ケラー量子化条件 (ja)
- アインシュタイン=ブリルアン=ケラー量子化条件 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is prop-en:knownFor
of | |
is prop-en:主な業績
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |